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Abstract— This work proposes a method for solving linear size, for all but the most academic of problems, resulting in
stochastic optimal control (SOC) problems using sum of squares discrete state space cardinality that may easily exceed the
and semidefinite programming. Previous work had used polyno- capabilities of current computers. Reducing the necegsity

mial optimization to approximate the value function, requiring fine di tizati I ide f anifi t gains ifsth
a high polynomial degree to capture local phenomena. To Ine discretization could provide for significant gains 1ms

improve the scalability of the method to problems of interest, area.
a domain decomposition scheme is presented. By using local Recently it has been discovered that the Hamilton Jacobi

approximations, lower degree polynomials become sufficient, Bellman (HJB) equation, a typically nonlinear partial diff
and both local and global properties of the value function ential equation (PDE) that arises in optimal control, may be

are captured. The domain of the problem is split into a ¢ f dt i PDE qi I mild fi
non-overlapping partition, with added constraints ensuringc’ ~ fansiormedio a linear given several mild assumptions.

continuity. The Alternating Direction Method of Multipliers ~ This is a large computational gain, as solving the nonlinear
(ADMM) is used to optimize over each domain in parallel and PDE is quite difficult [3]. Research into leveraging this
ensure convergence on the boundaries of the partitions. This computational advantage is only beginning.

results in improved conditioning of the problem and allows for One method to solve such problems lies in recent re-

much larger and more complex problems to be addressed with . TR e
improved performance. sults from polynomial optimization and semidefinite pro-
gramming [4]. These methods allow for optimization to
I. INTRODUCTION be performed directly over polynomials, and have solved

Motion planning in the presence of noise and dynamicg8 number of difficult problems. Here we present a novel
remains a central issue in robotics and autonomous systertige of such tools to directly construct an approximate value
As robots transition out of controlled factory and lab enfunction that satisfies the linear HJB equation. This alltavs
vironments, the ability to move precisely in the presenceptimal control problems, including those typically fouind
of unknown environments, exterior agency, and stochastiébotic motion planning, to be solved relatively quicklydan
actuators and sensors become ever more important. Foglgbally. In contrast to dynamic programming approaches, n
solution to be useful it must be rapid to compute, robust, ardirect state space discretization is required, postpottieg
incorporate optimality criteria. The primary avenue folvso curse of dimensionality and eliminating a potential sowte
ing motion planning problems, and likely the most succdssfi@pproximation error.
historically, has been that of sampling based planners [1]. In particular, we propose an augmentation of the algorithm
Such approaches are attractive as they may be quite rapidfiist presented in [5], in which the domain is split into disti
practice, but typically only have guarantees in the asytigpto partitions, each of which has its own local approximating
limit, and incorporate dynamics and stochasticity in only @olynomial. The value function may vary significantly over
limited way. the domain, and thus may require a high degree polynomial

Stochastic optimal control (SOC) provides an alternativef approximated over the domain’s entirety. But by using a
allowing for the full dynamics and various details of thesufficiently local approximation, a similar quality of glab
problem to be incorporated into the algorithm directlyapproximation may be achieved with smaller degree on
Traditionally, this has been handled through discretirgti each partition. Furthermore, we demonstrate that an efficie
resulting in the formulation of a Markov Decision Problemchoice of partitioning may lead to a decoupling in the
(MDP), which can then be solved through methods suc@ptimal control problems on each partition, allowing for a
as value iteration [2]. These methods have met with @egree of parallelization. The Alternating Direction Madh
great deal of success in a number of communities. THef Multipliers (ADMM) [6] is a particularly well suited
caveat is that such problems in robotics may be prohibitivelapproach, providing a principled method for paralleliaati
difficult to solve due to a number of obstacles, chiefly th@f certain convex problems with convergence guarantees.
curse of dimensionalityThese techniques rely on a fine
discretization of the stgte space whe% the sy)étem occupfbe"s Related Work
a continuous domain, typical of many robotic and control Linearly solvable SOC problems have recently been stud-
problems. Furthermore, robotic state spaces are usuatly qued from two avenues. One is Linear MDPs [7], in which

large, both in quantity of dimensions as well as absolutan MDP may be solved as a linear set of equations given
several assumptions. By taking the continuous limit of the
. Papusha was supported by a Department of Defense NDSEGFell djscretization, a linear PDE is obtained. Additionally)-fo
ship. The authors are with the Control and Dynamical Systenmaibaent, . .
California Institute of Technology, Pasadena, CA USA. Theaesponding Iowmg the work begun by Kappen [8]! the same linear PDE
author may be reached mhor owi t @al t ech. edu has been found through a particular transformation of the



HJB. The existing research has tended towards developitgcontrol as well. Furthermore, the ability to obtain gexter
sampling based approaches for solving the resulting lineaolutions to HJB has implications in regards to Control
PDE. This is done through the use of the Feynman—Kag/apunov Functions [21], allowing for stabilization to be
Lemma, that allows for a linear PDE to be solved byshown alongside near-optimality. Our method has the distin
examining the diffusion of a stochastic process. Feynmaradvantage over PWA approximations in that the system itself
Kac approaches have been further developed by Theodonsunot approximated, and the full nonlinear dynamics are
et al. [9] into a path integral framework in use with dynamidncorporated into the solution.
motion primitives. These results have grown in a number of
compelling directions, either relying on an MDP or samplindg'
based approach [10], [9], [11]. The ability to perform domain decomposition for stochas-
Sampling based approaches are an alternative to the é“ﬁ_ optimal control will rely on three main ideas: linear
proach presented here, with several potential advantaggi@chastic optimal control, sum of squares programmind, an
and disadvantages. Among these, sampling based approadii@ally the ADMM algorithm. We begin in Section Il by
such as that of Theodorou et al. may be more amenable fi@viewing the linear HIB. In Section Ill, we develop the
high dimensional state spaces. Such a comparison in p&ghnique first presented in [5] to approximately solve the
motivates the present work. linear HIB using convex programming via a sum of squares
Effort has also gone towards solving the linear HJBelaxation. Finally, we build the domain decomposition-pro
directly, as well as exploiting its properties for compiaasl cedure in Section IV. The need to enforce constraints on the
benefit. In [12] it is shown that the property of superposiboundaries between partitions then gives rise to our use of
tion may be used to compute optimal control solutions &ADMM, which is reviewed in Section IV-A and then applied
essentially zero computational cost, with significant impl to the problem at hand, the main contribution of this paper.
cations in solving Linear Temporal Logic (LTL) specified We illustrate each step on a simple nonlinear example in
tasks. The work of [13] leverages recent results in sparsgection VI, before tackling a more sophisticated example in
tensor decompositions to formulate a numerical techniqugection VII. Finally, we discuss some of the merits of the
that scaledinearly with dimension, allowing for the HJB to technique and future directions in Section VIII.
be approximately solved for a twelve dimensional systen]I
Finally, in [14] connections are made to a broader litelgtur ] ) ) .
such asavigationfunctions (popular in robotics), problems We begin by constructing the value function, which cap-
of moments, and broader classes of linear PDEs. tures thecost-to-gofrom a given state. If such a quantity is
The sum of squares approach presented here is Cd?p_OV\_/n, an (_)pti_mal action is _chosen to fo_IIow the quantity’s
nected via duality to problems of moments. By examinin@radient, bringing the agent into states with lowest cosrov
the moments of the HJB, an alternative line of work bfhe remaining time horizon. We defing € R™ as the system
Lasserre et al. [15], [16], [17] also reduces optimal cantrotate at timef, control inputu; € R™, and dynamics that
to a semidefinite optimization problem. In their work, the®Velve according to the equation
solution_ and the op_timality cond_itions are i_ntegrated agiai dzy = (f (x2) + G () ) dt + B (z¢) dwy 1)
monomial test functions, producing an infinite set of moment
constraints. By truncating to any finite list of monomiatset On a compact domaif, where the expression§z), G(x),
optimal control problem is reduced to one of semidefinitd3(x) are assumed to be smoothly differentiable, but possibly
optimization. Their method is more general, applicableny a honlinear functions, and; is a zero mean Gaussian noise
system with polynomial nonlinearities. Our method cortras process with covariancg.. The system has cost accrued
in that we propose candidate solutions of the value functiot timet according to
and thus avoid the need to include the control signal in 1
our polynomial basis, lessening the computational burden. r (2, ue) = g (ze) + Sup Rug 2)
We are also able to avoid consideration of initial and final : .

" . whereg(x) is a state dependent cost. We requijte) > 0
conditions and measures. Perhaps most importantly, our USE Il 2 in the problem domain. The goal is to minimize the
of the linear HIB allows for both upper and lower pointwise : P . 9

; expectation of the cost functional
bounds to be constructed to the true solution. B
Domain partitioning is an approach that has long been

used in numerical methods for PDEs, from the local analysis J(@,u) = ¢r (21) +/O r (@, ue) dt, ®)
behind the Finite Element Method to multi-scale decom- .
. ! : where ¢ represents a state-dependent terminal cost. The
position techniques [18]. In control, these techniquesehav . ) L T )

. . L solution to this minimization is obtained from thealue
also arisen to improve local approximation to Lyapunmfunction For an initial pointza. it is diven b
functions [19], and is complimentary to approaches that ap- P o 9 y
proximate nonlinear systems as piecewise-affine (PWA).[20] V (z9) = min E[J (z0)], 4
Our work may be seen as a continuation of this research “o.7]
theme, seeking to extend these techniques not only to timhere we use the shorthang, ) to denote the trajectory
study of stability, as is the case for Lyapunov functiong, buwof «(¢) over the time intervat € [0, T7.

Paper Outline

THE LINEAR HAMILTON JACOBI BELLMAN EQUATION



The associated Hamilton Jacobi Bellman equation, arising TABLE |

from dynamic programming arguments [3], is LINEAR DESIRABILITY PDEFOR VARIOUS STOCHASTIC OPTIMAL
CONTROL SETTINGS, FROM [7].

1
—8,V = min (r + (V)T f 4 = Tr (VaaV) GEGT) ).
w 2 5) Cost Functional Desirability PDE
Finite or(er) + [T r(aeu)dt Lqw — 2 — 1(v)
FirstExit | o7, (zr,) + [y r(ze, ur)dt Low =L(v)

. 1 T 1
A 1 , ES —
verage | limp_, TIE [fo 'r(xt ut)dt] )‘q\Il c¥ L(\Il)

As the control effort enters quadratically into the costdfun
tion, it is a simple matter to solve for it analytically by
substituting (2) into (5) and taking the gradient, yielding

w'=—-R1GT(V,V). (6)
) ) ) and PDEs shown in Table I. For convenience, we define the
The optimal controlu* may then be substituted into (5) gifferential operator
to yield the following nonlinear, second order PDE

o . L(T) := fT (vxm)+%ﬂ((vmm)zt). (11)

=+ %Tr ((VMV) BZeBT) ) [1l. THE SUM OF SQUARES RELAXATION

- , i . Building upon the results of [5], we relax the equality
The difficulty of soIvmg this PDE_ has tradmonally_ Pre- constraint (10), allowing for an over-approximation of the
vented the value function from being solved for directlyy 5 e function, and creating a linear differential inedfyal
quever, as has recently been found in [22], [7], If therep;q places the problem within the realm of polynomial opti-
exists a scalan > 0 and a control penalty cost € R™*" 7 otion problems where tools such as Busitivstellensatz
satisfying the noise assumption may be applied. Consider the relaxation
—1 T T A
AG(z)R™G(z)" = B(x)XB(z)" £ %4, (8) %q\I/ > 0,0 + [T(V.0) + %Tr((Vm\I/)Zt). (12)
then the logarithmic transformation ) o o ) .
Given that this is an approximation, we wish to obtain the
V=-XlogV¥ (9) best such approximation for a given polynomial order$or

. o S minimizing the pointwise error as our objective,
allows us to obtain, after substitution and simplificatitre

following linear PDE from equation (7), min.
1
st y—|(+tq¥ - (0¥ + L(V )20.
~0,¥ = %q\lf + 17 (V2 0) + %Tr((vmlll) ). (10) ! ()\q (0 + L(1))

Furthermore, due to the nature of the log transformation (9)
e require? to be positive everywhere, and we will examine

his problem only on a compact, semialgebraic donfain
The complete (centralized) optimization problem is

Through the transformatio, which we call here thale-
sirability [7], we obtain a computationally appealing metho
from which to compute the value functidn.

Remark 1. The noise assumptiof8) can roughly be inter-

preted as a controllability-type condition: the systemtcois min. vy (13)
must span (or counterbalance) the effect; of in_put nqise on st lq\l, > 9,0 + L() res
the system dynamics. A degree of designer input is also
given up, as tht.e.constraint restricts the des'ign of the gbntr y > lq\p — 9V —L(V) z€S
penalty R, requiring that control effort be highly penalized A o)
in subspaces with little noise, and lightly penalized insiéno U>e x € 0S
with high noise. Additional discussion may be found in [7]. _¢r@
y>W¥—e A x € 0S

The boundary conditions of (10) correspond to the exit
conditions of the optimal control problem. This may correThe inequalities are interpreted pointwise owee S. This
spond to colliding with an obstacle or goal region, and in th&et of polynomial inequalities motivates our need for a
finite horizon problem there is the added boundary conditioffethod to enforce non-negativity constraints over a poly-
of the terminal cost at = 7. These final costs must then Nomial directly.
be transformed according to (9), producing added boundaR/ )
conditions to (10). . Sum of Squares Review

Linearly solvable optimal control is not limited to the We provide a brief review of sum of squares (SOS)
finite horizon setting. Similar analysis can be performed tprogramming, with additional technical details available
obtain linear HIB PDEs for infinite horizon average costin [23], [17]. These tools will be key in the development
and first-exit settings, with the corresponding cost funeis  of approximate solutions to (13).



Formally, asemialgebraic sets a subset ofR™ that is IV. DOMAIN DECOMPOSITION

specified by a finite number of polynomial equations and \we first briefly review ADMM before demonstrating its
inequalities. An example is the set use in domain decomposition, following [6].

{(z1,22) €R? |2} + 23 < 1,2f — 25 <0} . A. Alternating Direction Method of Multipliers

Such a set is not necessarily convex, and testing membershipl N€ Alternating Direction Method of Multipliers (ADMM)

in the set is intractable in general [23]. As we will seeWlll serve as the basis for enforcing continuity and differ-

however, there exists a class of semialgebraic sets that &fiability of ¥(x) on the boundaries of the decomposed
in fact semidefinite-representable. Key to this developmefiedions. Other decomposition schemes are possible, sge [25

is the ability to test for non-negativity of a polynomial. ~ [26] for a survey. ADMM is a “meta’-optimization scheme,
A multivariate polynomialf (z) is asum of square¢SOS) vyhere each step is _carrled out _by_ soI_vmg a convex optimiza-
if there exist polynomialsfy (), ..., fm(«) such that tion problem. Consider the optimization
m min. - f(x) + g(2) w4
f(z) = fo(x), st. Ax+Bz=c¢c
i=1

over real vector variables and z, with convex functionsf
A seemingly unremarkable observation is that a sum @fhdg. Define an augmented Lagrangian
squares is always positive. Thus, a sufficient condition foy T p 2
non-negativity of a polynomial is that the polynomial is SOS™ — f2)+g(2)+y" (Az+ Bz — c)+§ 1Az + Bz —clly,
Perhaps_less obvious is that membership in the set of SQ@erey > 0 is an algorithm parameter, ands the dual vari-
polynomials may be tested as a convex problem. We dencig|e associated with the equality constraint. The comsdthi

the function f(z) being SOS ag(z) € %(x). optimization is solved through alternately minimizing the
Theorem 1. ([23]) Given a finite set of polynomials @ugmented Lagrangian over the primal variabies:, and
{f:}:", € R[z] the existence ofa;};", € R such that updating the dual variablg,
m M= argmin, L,(z, 2*, y*)
fo+ Y aif; € N(x) A= argmin L, (a5 2, %)
=1 Yyt = g 4 p (AP + BT — ).

is a semidefinite programming feasibility problem. i ]
The sum of squares formalism allows a general polynomial

Here, R[z] denotes the set of polynomials over for  optimization problem to be converted to a sequence of SDPs,
some fixed degree. Thus, while the problem of testing nofhere the variables are the polynomial coefficients. ADMM
negativity of a polynomial is intractable in general, byextends readily to SDPs. To that end, consider
constraining the feasible set to SOS the problem becomes .
tractable. The converse question of whether a non-negative min. - f(z) + g(2)
polynomial is necessarily a sum of squares is unfortunately st Az+Bz=c
false, indicating that this test is conservative [23]. Niee z€C, z€0,
less, SOS feasibility is sufficiently powerful for our puges. where z,z € R" are the variables and;,C, are SDP-

representable sets. With the same fofry, the ADMM

B. The Positivstellensatz iterations are quadratically penalized SDPs,

At this point it is possible to determine whether a particu- = argmin, e L,(z, 2*, y)
lar polynomial, possibly parameterized, is a sum of squares 1 ) € 1;+17 N
The next step is to determine how to combine multiple z = argminge, Ly (""", 2, 4")
polynomial inequalities. The answer is given by the theorem Yt = yF 4 p (A2 4+ BAMT — o).

that has come to be known as Stengledssitivstellensatz . . . :
The only difference is the primal variables are now con-

Theorem 2 (Stengle’s Positivstellensatz [24]The set strained to lie in the spectrahedra (the convex set of sdmide
inite constraints [27]C; andCs.

X ={z] fi(x) >0, hj(z)=0 The value in this decomposition is the attendant conver-

foralli=1,...,m,j=1,...,p} gence guarantees obtained with ADMM. In particular, we

will make the following two assumptions, which guarantee
is empty if and only if there exists € R[z], ands;,7i;,... €  convergence:

Y [z] such that i .
Assumption 1. The (extended real valued) functiorfs :

~1=s0+ > hiti+ > _sifi+ Y rijfifi+-- R" — RU+o0 and g : R™ — R U +oo are closed, proper,
i i i#j and convex.

This powerful theorem allows for (13) to incorporate theAssumption 2. The unaugmented Lagrangian has a saddle
domain requirements € S andx € JS. point.



If it can be demonstrated that the optimization problenis equivalent to the coefficient matching constraints
h mptions, then the followin neral r
obeys these assumptions, then the following general threore 0= ao — Bo + (Bopo)

becomes available:

0=ay — fB1+ (Bop1 + 01p0)
Theorem 3. (See [6]) Given Assumptions 1, 2 then the 0=y — By + (Bops + 0101 + 0
ADMM iterates satisfy the following: 2= P2+ (Bopz + 0101 + G2p0)

« Residual convergence: r* — 0 ask — oo, i.e., the :
iterates approach feasibility 0=ag— Ba+ Oa—rpr).

» Objective convergence: f(a%)+g(2") = p" @Sk = 00, Ngte that the coefficient matching constraints are affine in
i.e., the objective function of the iterates approaches thl%e decision variables;, 3, i = 1 d, and6;, u;, j =
1 1 I A et ] J1 71 -

gpt;lmal \./:tl;lje ok “ ask h 1,...,d—k. The derivative constraint (21) appends additional
+ Dualvariabie Convergence: y= = y- ask — oo, WNere . qafficient matching constraints,

y* is a dual optimal point
0= a1 — B1+ (Hopo)

B. Decomposition of Stochastic Optimal Control 0 =209 — 22 + (pop1 + H1p0)

As the optimal control problem is assumed to take place 0 =30z — 302 + (pop2 + 1p1 + p2p0)

over a compact state space, the domain of (10) may decom-

posed into finitely many regionR; C R", j = 1,..., Ng. o

Assuming the pairwise boundary between the regions may 0= dag — dBa + (Ha-rpr)-

be described in terms of a semialgebraic set, we have tkm®ntinuity of higher order derivatives are incorporatemh-si

following result, ilarly. The continuity and derivative coefficient matching
constraints, together with the approximation error con-

Theorem 4. Given desirability function¥;(z) valid on g .y (22), can be aggregated into matrix form,

regionR;, ¥;(x) valid on regionR;, and shared boundary

& = {x | h(z) = 0} betweenR; and R, we have¥,(z) = AWz + AP 2y =0,
V;(x) on¢ if there existsc(r) € R[z] such that wherez; = (a, . .., 04_r, 1) are the coefficients associated
with Ry, andze = (8o, - - -, a—k, y2) are the coefficients as-
Vi(x) — ¥j(z) + c(z)h(z) =0 sociated withR. It is now straightforward to incorporate the

. N affine matrix constraint into a dual decomposition scheme.
Proof. A straightforward result of the Positivstellensatz,The decomposed variant of optimization (13) is

see [28] for detalils.

min. 1 + 72 (15)
. Similarly, continuity of_then—t.h derivatiye may be egsily s.t. %q\lll > 0,0y + L(¥,), z€Ry (16)
incorporated as well by imposing equality of the derivative A
along the boundary. Xq\IIQ > 0¥y + L(Ps), z€Rs @7
1
C. Two Region Explicit Example M- ()\CJ‘IH - Th8> >0, zeR1 (18)
In the following analysis, we demonstrate how this result 1
can be used to bind together optimization problems over T2 ()\q% _Ths> 20, z€R,  (19)
a de_composed d_omain. To obtain a us_eful policy, we will Uy (z) — Uy(z) + c1(z)z =0 (20)
require the combined policy to b@' continuous. o, o,
For clarity, we examine a pair of bordering partitioRs —(z) — —=—(x) + ca(x)z =0 (21)
) . ox ox
and R», with shared boundary.(z). The polynomials are = 22)
assumed to be of bounded degrees, i)V, (z)) bounded ! ?
by d anddeg(c;()) by d — k, for all 7, j. In this case, where the Positivstellensatz is used to enforce the domain
restrictions (see [5] for details). The coupling constisin
Uy (z) = ap + gz 4 - + aga? (20) and (21) prevent decomposition into two parallel op-
timizations. In addition, the objective is coupled throupk
v = d . X . .
2@) = fo+ P+ + Paz Ik equality constraint (22), which ensures that the maximum
ci(a) =00+ bz + -+ by g pointwise approximation error over any region is no more
ca(w) = po + px + - + fa—rz ", thany™% = y; = 7s.

To wit, define the quadratically penalized Lagrangian
whereh(z) = po + pr1z + - - - + pra® defines the boundary
region. The continuity constraint Loy, 21,72, 22, A) = 72 + Zey (21) + Lo, (22)+

2
FAT(AD 2, 4 AP ) + g HA(1)21 + A4,

3

Uy (z) — Ua(z) + c1(x)h(x) =0



whereZ¢, (z;) is the indicator function of the optimization
problem over each individual partition, obtained by reérct
of (13) to semidefinite program form [4]. The alternating
direction iteration may then be performed as

(m ) = arg min Lp(y1,21,78, 25, A%) (23)

(5, 251 = arg%izg Lp(’yic+1’2f+17’}/2722,)\k) (24)

k+1 .__ yk 1) k+1 2) k+1 Rie
ML= NP p(AD T A2 0T, (25) Tro(2)
The above procedure may be repeated for all partit®ns

andR; that share a common boundary. Each minimizatiorsig. 1. A particular grid domain decomposition with the pantis
a semidefinite program, is taken over only those constraingsouped into shaded and unshaded sets. As the sets of the sione c
associated with the specified region. This achieves a degrr@ uire no consensus over their local variables, it is ptes3o perform the

. L . ’ ) Co opfimization over each set in parallel while maintaining tlenergence
of decoupling, limiting the size of the polynomial optimiza properties of ADMM.
tion problem, and thus the semidefinite program, for each
individual partition.

of the optimization results in an additional optimization

) ] ... problem that can be used to find a pointwise lower bound to
A further decoupling may be achieved through a judiciou,e ynderlying optimal solution. As both upper and lower

choice of domain partitions. This idea is well known inpgnds are available, it is possible to see the maximal

the partial differential equation community [18]. Suppos%ossime error of the solution. See [5] for details.
partitionsR; andR; share no common bordér; ;(x). As

variables from disjoint partitions are only shared throtigh
common boundary constraints (20), it is straightforward to

k+1 k+1 H L . .
see thatz; "~ and z;* are independent of one another. \ye construct the optimization for a simple scalar exam-

This allows for these optimizations to be performed inyq for jllustrative purposes. Consider the one dimensiona
parallel. One valid partition is to decompose the domaug stem

into a checkerboard pattern, separating the domain int )

shaded and unshaded tiles. As shaded tiles share no opti- dz = (2 +u) dt + dw

mization variables with one another, they may be optimized i

in parallel, and similar with the unshaded. By alternatin@" the domairr € [—1,1]. We have state coglz) = 1, con-
between shaded and unshaded, the correct descent direcfih COStR = 1, and parametek = 1. We split the domain
continues to be taken, guaranteeing convergence. See [3YP regionsR. = {z [z € [=1,0]}, Ry = {z | z € [0, 1]},
for a detailed discussion of parallelization ideas, and Eig Créatinghis(z) = x. For each of these problems we form

for an illustration of this beneficial decomposition patter the Optimization (13) oy, R independently. To enforce
equality of both the solution and its derivative at the stare

D. Parallelization

VI. SCALAR EXAMPLE

V. ANALYSIS point x = 0 we add the coupling constraints

A benefit of the sum of squares relaxation approach is that
the solutions produced are guaranteed to be upper and lower Uy (2) — Wa(z) + cra)r =0
bounds (depending on the direction of the inequality (12)) 0w, () — oV, () + ea(w)z = 0
when performed over a single partition [5]. These guarantee Ox Ox 2 '

are retained in the domain decomposition setting. To enforce the continuity constraint (20) for the point bdun

Theorem 5. Given a solution sef¥;,~;} to the converged ary at the origin, it suffices to match the constant coeffisien
optimization problen(23) where C? continuity is enforced, of ¥; and ¥,, i.e., we requirel;(0) = ¥5(0). This is an
and if U* is the solution to(10), then¥(z) > ¥*(z) for all  affine constraint when the polynomial optimization is passe
T € R,;. to an SDP.

Proof. (Sketch)The derivation follows the proof of Theo- Numerical results for the one dimensional example are

rem 5 in [5] with little modification. The only modification shown in Fig. 2 and Fig. 3. For simplicity, the conditioning

arises from the fact that the elliptic and parabolic ma\ximun‘?""raImeter was set jo= 1, and the polynomial degree bound

principles rely onC continuity of the super-solution. As the t(: 6 fo; Egi;]Mreg'OTf Fig. 2d_;how?_ tg.ﬁ Wlttkt';]n gbout ten
solution is polynomial on the interior of each boundary, and cpPs 0 , continuous differentiability at the boungtar

therefore infinitely differentiable, this requirement de@nly (rje%:?n;rzb(l)ef Zh'e\éﬁdéslzt'gé 3msah(')|\~,nvsr:1h2 evrcz)lu.trl‘rc]ngt.g;thz
be enforced explicitly along the partition boundaries. [J uat varl » as W Ximum approximation gap

with iteration number. The SDP optimization on each region
A benefit of this approach is that not only may an uppewas carried out on SDPT3 using YALMIP with the Sum of
bound be computed, but in fact reversing the inequalitieSquares module [30].



U(z,y), d =8, n, =3, y7** = 0.57938 U(z,y), d =14, n, = 1, ™% = 0.0978

-1 -1 -1

Y x x Yy x
(a) CY-continuous approximation (b) C'-continuous approximation (c) high fidelity approximation

Fig. 4. Results of multidimensional, nonlinear example.

... Evolution of U¢(z) and ¥y(z) TABLE I
SLACK VALUE ~™&* AS A FUNCTION OF POLYNOMIAL DEGREEd, AND

12F NUMBER OF REGIONSn, PER DIMENSION

d
4 6 8 10 12 14
6.8374 25085 0.6344 0.3501 0.0804 0.0978
6.7065 2.1561 0.6399 0.3642 0.0859
6.4688 2.0579 0.5794 0.3304
6.2662 2.0689 0.5591 0.3005
6.6289 1.8812 0.5919 0.2917
6.3017 1.7638 0.5716
6.3178 1.6533 0.5403

~NOoO O WN 3

Fig. 2. Evolution of the alternative value function over 10MM steps.

Arrows show direction of evelution. dimension, and approximating polynomial degree boudnd

in each region.

VIII. CONCLUSION
g“ é A method to perform domain decomposition on stochastic
B < optimal control problems has been developed, allowing for
local polynomial approximations to the Hamilton Jacobi
e 5 S | | | Bellman equation to be generated in parallel. Of importance
step step is the fact that the sum of squares relaxation used does not
Fig. 3. Values of the dual variables (left) and maximum apprmtion fUndamentally rely on the particular structure of the HJB
gap (right) with iteration number. PDE. In fact, [5] demonstrates that the technique may be

readily applied to any linear parabolic or elliptic PDE to
obtain guaranteed upper and lower bounds over the domain.
VII. NONLINEAR CARTESIAN SYSTEM The domain splitting of this work extends as well, allowing

for local upper and lower bounds to any linear PDE to

To demonstrate the versatility of the method, a nonlineage generated via optimization. While more involved than
multidimensional problem was solved with the fOIIOWIngexisting numerical techniques such as the Finite Element

dynamics, method, these techniques have formal guarantees that do not
de 9 — 23 — By — ¢ " duwr require an asymptotic limit in discretization mesh size.
[dy] = ( : [ 62 + 23 — 3y — ¢ ] + [ D dt + {de : A more direct implication lies in the generation of sta-
bilizing controllers for nonlinear systems. Until now, the
The problem is framed as a first exit problem, with théhas not existed a method to generate near-optimal Control
three sides of a square domain= [—1,1?] given a unit Lyapunov Functions for arbitrary nonlinear, stochastis-sy
penalty ¢(x,y) = 1, while on the remaining edge at= tems [21]. These domain decomposition techniques improve
1 a reward was given for achieving the center of the edgiae ability for optimal control policies to respond to syste
with ¢(x,y) = 1 — (y —1)2. Representative alternative valuedynamics, enlarging the class of systems that can be handled
function approximations are shown in Fig. 4. In Table lIFurthermore, existing results on sum of squares in Lyapunov
we also summarize the maximum approximation gé&p* functions can be used to verify the stability of any policy
for a checkerboard decomposition fwith n,. regions per produced by these decomposition methods.



A. Future Directions
It is straightforward to recognize that many domain de[15

[14]

compositions, such as the checkerboard pattern illustrate
produce highly structured sparsity patterns in the senmitefi [16]
program’s constraint matrices. Such sparsity structues® h
previously been used to significantly improve the computdgi7]
tional cost of large scale semidefinite and sum of squares
programs [31], [32], work that could easily be applied herfﬁs]
as well. It is also an interesting question as to how sparse

basis functions [13] might be incorporated into the domain
decomposition approach.
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