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Abstract— We investigate trajectory generation algorithms
that allow a satellite to autonomously rendezvous and dock with
a target satellite to perform maintenance tasks, or transport
the target satellite to a new operational location. We propose
different path planning strategies for each of the phases of
rendezvous. In the first phase, the satellite navigates to a point
in the Line of Sight (LOS) region of the target satellite. We show
that the satellite’s equations of motion are differentially flat in
the relative coordinates, hence the rendezvous trajectory can
be found efficiently in the flat output space without a need to
integrate the full nonlinear dynamics. In the second phase, we
use model predictive control (MPC) with linearized dynamics
to navigate the spacecraft to the final docking location within
a constrained approach envelope. We demonstrate feasibility of
this study by simulating a sample docking mission.

I. INTRODUCTION

Rendezvous and docking are used in several mission types,

such as manned spaceflight, resupply, assembly, servicing

and repair, and refueling [1], [2], [3], [4], [5], [6]. In all

these missions, the concept of operations is very similar: the

rendezvous phase refers to the approach of one spacecraft

to another at a relative distance of 10 km to 100 m;

the docking phase refers to the final approach maneuvers

executed to engage docking ports, less than 100 m from the

target spacecraft; and the docked phase refers to the control

of the rigidly-attached spacecraft pair, such as orbital re-

positioning. In most cases, the target spacecraft is passively

performing station-keeping while the chaser spacecraft ac-

tively handles the rendezvous and docking process.

Generally, the goal in a rendezvous and docking problem

is to minimize fuel or propellant use, as fuel is a spacecraft’s

most valuable resource—since the initial fuel supply is

constrained by launch vehicle lift capabilities, and satellites

are generally not able to replenish fuel in orbit, the satel-

lite’s mission ends when the fuel is exhausted. Successful

proximity operations also rely heavily on the availability and

accuracy of relative measurements: radar and GPS can be

used in the far-field, laser range finders are only valid within

about 1 km relative distance to the target spacecraft, and

stereo cameras and other visual navigation are generally only

available within about 100 m of the target spacecraft. Various

approaches, such as Kalman filtering and sensor fusion, have

been proposed to deal with the measurement problem [7],

[8], [9].

Our work addresses a portion of the benchmark ren-

dezvous problem of relocating a broken spacecraft [10]. In
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this scenario, a defunct satellite or piece of space debris,

referred to as the “target,” occupies a given circular orbit

slot. Such debris takes up valuable space, can collide with

other objects, or can exit the orbital slot and become a

hazard. To prevent this, a tug spacecraft, referred to as

the “chaser,” will autonomously dock to the target and act

as a propulsion system that relocates the target to a new

operational “graveyard” position.

Our focus in this paper is on autonomously navigating the

chaser to the docking position. To this end, we split the ren-

dezvous problem into two different phases, and use different

control approaches in each phase: boundary value control in

the far-field, and model predictive control (MPC) for close-in

planning. During the first phase, trajectories outside the line

of sight (LOS) cone are generated efficiently by exploiting

the differential flatness of the relative frame equations of

motion, and an effective lack of state constraints far from

the final docking location. Until the chaser enters the LOS

region, this initial phase (10 km to 100 m) of rendezvous

corresponds to navigating the spacecraft to specified points

along the trajectory.

In the second phase, once the spacecraft is inside the

LOS region (100 m to 0 m), we use MPC to navigate

the spacecraft to the final docking location. MPC has been

successfully applied in the past to rendezvous and navigation

of satellites [11], [12], [13], and is an appropriate control

strategy in the final phase, because it allows the incorporation

of constraints on the relative position, closing velocity, and

thrust.

Our simulation results show that a combination of these

approaches is effective and efficient. The rest of this pa-

per is organized as follows. In Section II, we present the

equations of motion and their transformation to Hill’s frame.

In Section III, we prove that the equations of motion are

differentially flat, and discuss the boundary value problem

for navigating the chaser to a location in the LOS region. In

Section IV, we present the MPC optimization problem that

navigates the chaser from a location in the LOS region to the

docking position. We show simulation results in Section V,

and conclude in Section VI.

II. SATELLITE DOCKING

A. Equations of motion

Let (r,R) ∈ SE(3) be the inertial position and orientation

of the target spacecraft frame, and rc ∈ R
3 the inertial

position of the chaser. The rotation matrix R ∈ SO(3) rotates

vectors from the target frame to the inertial frame, and RT

rotates them back to the target frame. Assuming the target is



in a uniform circular orbit with radius ‖r‖ = a, the equations

of motion in the inertial frame are:

r̈ = −n2r (1)

r̈c = −
µ

‖rc‖3
rc + fI/mc (2)

Ṙ = Rω∧, (3)

where n =
√

µ/a3 is the target angular velocity (mean

motion), µ = GM is the standard gravitational parameter,

mc is the mass of the chaser spacecraft, ω = (0, 0, n) ∈ R
3

is the instantaneous body angular velocity of the target frame

(∧ denotes the cross-product matrix, see Section II-C), and

fI ∈ R
3 are external inertial forces on the chaser.

B. Relative frame planning

It is convenient to work in relative coordinates. Define

ρ = RT (rc − r) = (x, y, z) ∈ R
3 as the relative position of

the chaser in the target (Hill’s) frame (see Fig. 1). Solving

for rc and substituting into (2), we obtain

r̈ + ¨(Rρ) = −
µ

‖r +Rρ‖3
(r +Rρ) + fI/mc. (2′)

Together, equations (1), (2′), and (3) describe the (nonlinear)

orbital dynamics of the target and chaser in terms of the

target’s inertial orientation (r,R) and the chaser’s relative

position ρ in the target’s frame.

i

j k

Fig. 1. Rotating reference (Hill’s) frame centered at the target platform:
radial direction i, parallel to velocity (in-track) j, and out of plane (cross-
track) k.

The goal is to select forces, and indirectly thrusts, that

ensure the chaser reaches the target, ρ(t) → 0. Because the

nonlinear motion is difficult to treat, the Clohessy–Wiltshire–

Hill (CWH) linearization is typically used for the constrained

docking portion of the proximity operations [14],










ẍ− 2nẏ − 3n2x = fx/mc

ÿ + 2nẋ = fy/mc

z̈ + n2z = fz/mc.

(4)

The CWH approximation holds well only when the target

and chaser orbits are very close—over a few orbital periods

with target separation no more than about 20 km (see Fig. 2).

As a result of this distance limitation, the CWH equations

are only used in the terminal LOS-constrained portion of the

docking process, where the state-constrained linear equations

of motion allow direct application of model predictive control

(MPC). A full nonlinear model is used outside of the LOS

cone. We treat the nonlinear equations of motion efficiently
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Fig. 2. For a target in circular low earth orbit (415 km) and initial
separation of 100 km, the CWH linearization (dashed) departs from the
nonlinear dynamics by more than 2000 km over just 1.5 orbital periods. By
comparison, an initial target separation of 20 km shows much less departure.

using differential flatness, because MPC without modifica-

tion is not a feasible approach while the chaser is far away

from the target, due to the computational limitation caused

by having a large prediction horizon. Note that unconstrained

control techniques like LQR can only provide a baseline level

of performance that, in general, violates the state and input

constraints.

C. Linearization

In this section we provide a modern derivation of the

nonlinear dynamics and CWH equations (4) using notation

familiar to robotics and manipulation (e.g., [15]). Specifi-

cally, the linearization (4) is used for close-in (MPC-based)

planning, while the full nonlinear model (6) is used in the

far-field. Recall that the cross product matrix is defined as

ω∧ ∆
=





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 ∈ SO(3), ω ∈ R
3.

Using Ṙ = Rω∧ and R̈ = R(ω∧ω∧ + ω̇∧), we have

¨(Rρ) = R̈ρ+ 2Ṙρ̇+Rρ̈

= R(ω × (ω × ρ) + ω̇ × ρ+ 2ω × ρ̇+ ρ̈)

= R(ω × (ω × ρ) + 2ω × ρ̇+ ρ̈), (5)

since ω̇ = 0 for a uniform circular orbit. We can substitute (5)

and (1) into (2′) and split out a factor of n2 = µ/a3 to obtain

− n2r +R(ω × (ω × ρ) + 2ω × ρ̇+ ρ̈)

= −n2

(

1 +
‖ρ‖2

a2
+

2rTRρ

a2

)−3/2

(r +Rρ) + fI/mc.

Next, we multiply both sides by R−1 = RT and use the

following substitutions for a circular orbit:

RT r = (a, 0, 0), ρ = (x, y, z), ω = (0, 0, n).



After some simplification, we arrive at the vector equation




ẍ− 2nẏ − n2x− n2a
ÿ + 2nẋ− n2y

z̈





= −n2

(

1 +
x2 + y2 + z2

a2
+

2

a
x

)−3/2




x+ a
y
z



+
f

mc
,

(6)

where f
∆
= RT fI is the target-referenced chaser control

forces. Note that the left side is linear in (x, y, z). By

linearizing the right side around (x, y, z) = 0, we obtain

the CWH equations (4).

III. BOUNDARY VALUE PLANNING

Differential flatness was originally studied in [16], ex-

tended in [17], and has been used to great success in nonlin-

ear trajectory generation for a variety of mechanical systems,

rigid body chains, robotic arms, and quadrotors [18], [19].

Examples of differentially flat systems include controllable

linear systems, feedback linearizable systems, and fully

actuated mechanical systems. In this work, we exploit the

differential flatness of the nonlinear dynamics (6), where the

flat output is the target-referenced coordinate ρ = (x, y, z).
In general, a system with state x ∈ R

n, control input

u ∈ R
m, and (possibly nonlinear) dynamics

ẋ = f(x, u) (7)

is differentially flat if there exists an output y ∈ R
m of the

form

y = y(x, u, u̇, . . . , u(p)),

such that the state and control are functions of y and its

derivatives,

x = x(y, ẏ, . . . , y(q)), (8)

u = u(y, ẏ, . . . , y(q)). (9)

The output y, called the flat output, plays a central role

in trajectory planning because it determines both the state

trajectory and the control input.

A. Boundary value problem

Consider the problem of finding a trajectory x : [0, T ] →
R

n and an open loop control law u : [0, T ] → R
m satisfying

the nonlinear dynamics (7) along with the initial and final

constraints

x(0) = xi, x(T ) = xf, (10)

where xi, xf ∈ R
n are prescribed initial and final states, and

T is a fixed final time. If the mapping (8) between the states x
and (y, ẏ, . . . , y(q)) is bijective, then the state constraints (10)

can be rewritten as

y(0) = yi,
ẏ(0) = ẏi,

...

y(q)(0) = y
(q)
i

y(T ) = yf,
ẏ(T ) = ẏf,

...

y(q)(T ) = y
(q)
f ,

(11)

where xi = x(yi, ẏi, . . . , y
(q)
i ) and xf = x(yf, ẏf, . . . , y

(q)
f ).

B. Trajectory generation

It is common to write the flat output y trajectory as a linear

combination

y(t) =

N
∑

j=1

αjφj(t), (12)

where for each j = 1, . . . , N , the basis functions φj :
[0, T ] → R

m are known, and the real coefficients [αj ] are

to be determined. The boundary value constraints (11) are

linear in the coefficient vector (α1, . . . , αN ),










y(0)
ẏ(0)

...

y(q)(0)











=











φ1(0) φ2(0) · · · φN (0)

φ̇1(0) φ̇2(0) · · · φ̇N (0)
...

. . .

φ
(q)
1 (0) φ

(q)
2 (0) · · · φ

(q)
N (0)





















α1

α2

...

αN











,

(13)










y(T )
ẏ(T )

...

y(q)(T )











=











φ1(T ) φ2(T ) · · · φN (T )

φ̇1(T ) φ̇2(T ) · · · φ̇N (T )
...

. . .

φ
(q)
1 (T ) φ

(q)
2 (T ) · · · φ

(q)
N (T )





















α1

α2

...

αN











.

(14)

Note that for a given coefficient vector (α1, . . . , αN ),
we can determine both the state trajectory x(t) and the

required control input u(t) by taking successive derivatives

of (12) and substituting them into (8) and (9). These deriva-

tives are computed in closed form without numerical loss.

Furthermore, any coefficient vector that satisfies the linear

constraints (13) and (14), automatically satisfies the initial

and final state constraints (10).

C. Fully actuated mechanical system

In the target-referenced coordinate ρ, the docking problem

corresponds to a fully actuated mechanical system of the

form

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ.

Note that this mechanical system is differentially flat with flat

output q
∆
= ρ = (x, y, z) and torques τ = f/mc, provided

it is fully actuated, see [18, Table 2]. This assumption

is satisfied for the docking problem, provided the chaser

spacecraft can thrust in any direction, without any constraints

on the thrust force magnitude. Given a trajectory q(t),
we determine the optimal inputs by solving the nonlinear

equations (6) for f/mc. In practice, constraints on the thrust

force magnitude for far-field planning are incorporated, by

proxy, by penalizing the final relative acceleration q̈(T ) and

the trajectory coefficient norm.

D. Trajectory parameterization

We write the Hill’s frame referenced trajectory q(t) ∈ R
3

as a Fourier series around the orbital period n,

qi(t) = γi +
N
∑

j=1

αij cos(jnt) + βij sin(jnt), i = 1, 2, 3,

(15)



where N is the number of Fourier coefficients and [γi],
[αij ], and [βij ] are constant coefficients to be determined.

With initial and final conditions q(0) and q(T ), feasible

trajectories are given by coefficients that satisfy the linear

equations (15). Note that time derivatives of q(t) are also

linear in the coefficients. While other basis functions can

be used to parameterize the relative trajectory, we found

that a Fourier series around the orbital period works well.

Furthermore, actuator bandwidth is incorporated directly by

limiting the number of high-frequency coefficients.

IV. MODEL PREDICTIVE CONTROL

Using boundary value optimization, we obtain a trajectory

to bring the chaser satellite to a point inside the LOS region.

Then, we apply MPC to generate a trajectory that leads

to the target or docking position. To obtain the controller

using MPC, we discretize the continuous-time equations of

motion obtained in (4). For simplicity, we present results

for the in-plane 2D dynamical system, ignoring the out-

of-plane z coordinate. Moreover, the objective function is

defined as a quadratic objective function. Following the

description in [11], the LQ MPC optimization problem with

linear constraints at each time step k is defined as:

min. x(k +Np)
TPx(k +Np)+

Np−1
∑

j=0

x(k + j)TQx(k + j) + u(k + j)TRu(k + j)

s.t. x(k + j + 1)=Ax(k + j)+Bu(k + j),

j=0, . . . , Np − 1 (16)

|ui(k + j)| ≤ umax, i = 1, 2, j=0, . . . , Np − 1 (17)

|vi(k + j)| ≤ vmax, i = 1, 2, j=0, . . . , Np − 1 (18)

ALOSx(k + j) ≤ bLOS, j=1, . . . , Np, (19)

where Np is the prediction horizon, and P ∈ R
n×n is the

solution of the Riccati equation related to the LQR problem,

used as the terminal cost to enforce stability. The matrices Q
and R are appropriately defined positive definite weighting

matrices for the quadratic cost function. The constraint (16)

refers to the state-space dynamics in which the A and B
matrices come from discretizing the CWH equations (4); the

constraint (17) defines bounds on each component of the

input (thrust force); the constraint (18) defines bounds on

the closing velocity; and (19) is the LOS cone constraint,


































sin(ϕ+ γ)

(rp − rtol) sin(γ)
x(k)−

cos(ϕ+ γ)

(rp − rtol) sin(γ)
y(k) ≥ 1,

−
sin(ϕ− γ)

(rp − rtol) sin(γ)
x(k) +

cos(ϕ− γ)

(rp − rtol) sin(γ)
y(k) ≥ 1,

cos(ϕ)

rp sin(γ)
x(k) +

sin(ϕ)

rp sin(γ)
y(k) ≥ 1,

where ϕ is the angle between the platform docking port and

the x-axis, γ denotes half of the LOS cone angle, rp is the

radius of the target platform (assuming it has a disk shape),

and rtol denotes the distance by which the vertex of the LOS

cone is moved inside the platform (chosen to relax the LOS

constraint). The first two constraints force the satellite to

stay within the LOS cone and the last constraint ensures that

the collision of the chaser with the target is avoided with

the relaxed cone constraints. For more details regarding the

LOS constraints, we refer the reader to [11].

The main reason for using MPC at this stage is to be

able to enforce LOS, velocity, and thrust constraints. It is

generally true that the longer the prediction horizon Np, the

better the closed-loop performance (though having a very

large Np also increases the computation time). In the next

section, we compare MPC to LQR, and show examples

where the chaser violates the LOS constraints even after

tuning LQR to limit the input magnitude. However the MPC

trajectory stays within the LOS cone as required. We also

show that for Np = 30 and a sampling time 0.5 sec, the

obtained trajectory converges to the target’s docking position.

V. SIMULATION RESULTS

In this section, we show the application of each control

method to its associated approach phase, in order to generate

a trajectory that leads the chaser satellite to the docking

position on the target satellite. We used MATLAB R2014b to

simulate the docking paths, and CVX and SDPT3 to solve

the optimization problems [20], [21].

A. Phasing in from far away via differential flatness

Outside the LOS cone (> 100 m), the state is uncon-

strained, therefore we can exploit differential flatness. We can

choose to minimize any convex function of the coefficients

[γi], [αij ], and [βij ] that satisfy the linear equations (15) at

the initial and final times. Two objectives that make sense are

minimum final relative acceleration at time T , and minimum

weighted coefficient norm. These are given by:

Jacc = ‖q̈(T )‖22,

Jwnorm =

3
∑

i=1

(

N
∑

j=1

(jn) (|αij |+ |βij |)
)2

.

We choose these objectives because total fuel use is not

directly a convex function of the variables [γi], [αij ], and

[βij ]. As a result, fuel is minimized by proxy. For exam-

ple, Jwnorm was chosen to be an upper bound on maxi-

mum relative velocity over the mission timeline, so that

maxt∈[0,T ] ‖q̇(t)‖
2
2 ≤ Jwnorm. Other objectives are possible,

e.g., the fourth derivative (or snap), which has been success-

ful in the context of quadrotor control [19]. Here, the final

location of the chaser is a point in the LOS cone, which is the

initial position of the MPC plan. The location we have chosen

inside the LOS cone is (0.1,−0.01) km and the magnitude

of the final velocity is set to 1.5 m/s.

In general this method provides inputs suitable for non-

impulsive engines, however, experiments show that as the

Fourier basis becomes more expressive with larger N , the

inputs become more impulsive, which is the expected optimal

behavior. Fig. 3 shows the trajectories with N = 1000 basis

elements, and control input magnitudes for two different

mission timelines T = 2160 sec, and T = 4320 sec. A
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Fig. 3. Flatness-based docking with initial separation of 20km by minimiz-
ing maximum relative velocity Jwnorm with two different mission lengths:
2160 sec (left column) and 4320 sec (right column). Here, N = 1000

coefficients. The inputs become impulsive with higher N .

longer mission timeline results in less fuel use (area under

the control magnitude curve), however, the control inputs

are not constrained. Though we have not shown this here,

it is possible to penalize the control inputs by a weighted

objective on the input weights. Alternatively, the inputs can

be clipped to their maximum as long as the impulse delivered

is the same. We should mention that while the Fourier basis

is adequate, a more careful selection of trajectory basis ele-

ments and objective weights tuned to a specific rendezvous

application, actuator type, and bandwidth, are needed in a

more realistic nonlinear path planning application.

B. Close-in docking via MPC

The parameters picked for this example are influenced

by [11]. The mass of the chaser is mc = 500 kg, target

radius rp = 2.5 m, LOS cone half angle γ = 30◦, tolerance

rtol = 0.5 m, and target angular velocity n = 1.107× 10−3

rad/s. The sampling time for the discrete model is 0.5 sec,

and the weighting matrices in the objective function are:

Q = 3

[

0.1I2×2 02×2

02×2 I2×2

]

, R = I2×2.

The maximum thrust magnitude is umax = 0.06 kN, max-

imum closing velocity vmax = 1.5 m/s, and the prediction

horizon is Np = 30. The process noise is i.i.d. Gaussian

w = (w1, . . . , wn4
) ∼ N (0, I4×4).

To simulate a departure from the nominal trajectory in

Fig. 3, we solve the MPC optimization problem (16)–(19),

with initial state

x(0) =









0.1
−0.01

−vmax cos(θ)
−vmax sin(θ)









, θ = tan−1 x2(0)

x1(0)
,

i.e., within the LOS cone, just over ∼ 100 m away, and

pointed toward the target. The MPC maneuver simulation

time is 111 sec. Note that the initial state in this phase

corresponds to the final state obtained using the flatness

approach in the previous section. We compare our results

with a simple LQR controller.
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Fig. 4. Trajectory and velocity generated for the chaser and the optimal
control sequence using LQR and MPC. The target spacecraft is shown as
the center-circle, and the red lines delineate the LOS cone.

The obtained trajectory, relative velocity, and the optimal

input sequences using MPC and a baseline LQR approach are

shown in Fig. 4. The upper-right plot is a zoomed-in view

of the final position of the chaser shown in the upper-left

plot. As can be seen in this plot, the trajectory of the chaser

using LQR violates the LOS constant while the trajectory

provided by MPC remains within the LOS cone. The bottom-

left plot shows that both components of the velocity stay

within the given bound. The bottom-right plot shows that

both components of the input vector u remain within the

given bound. The baseline LQR controller has the same Q
and R matrices as the MPC controller, but has an infinite

horizon, and does not explicitly bound the control input or

relative closing velocity.

We also illustrate in Fig. 5 that picking different initial

positions for the chaser inside the LOS cone results in a

successful trajectory plan using MPC, whereas for LQR, the

chaser always ends up in a location outside the LOS cone.

For this experiment, we picked 10 different initial states

in the proximity of the LOS cone boundary (red lines in

Fig. 5). The results of these two sections demonstrate that

the combined control approaches, i.e., the flatness approach

together with MPC, result in a satisfactory trajectory for the

rendezvous and docking mission.

VI. CONCLUSION

In this paper, we presented trajectory generation tech-

niques for the rendezvous and docking of satellites. To au-

tonomously navigate the chaser, we combined two different

control strategies, which switch depending on the position

of the chaser with respect to the target. In the first phase,

where the chaser is still far away from the target (10 km

to 100 m), we found the trajectory by solving a boundary
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Fig. 5. Trajectories generated for the chaser using LQR and MPC with
different initial positions. Target spacecraft is shown as the center-circle,
and the red lines delineate the LOS cone. Left-hand side plots show the
full approach (top-left: MPC, bottom-left: LQR), right-hand side plots are
a zoomed-in view of the final position of the chaser relative to the target
(top-right: MPC, bottom-right: LQR).

value problem. We showed that the equations of motion

of the chaser satellite are differentially flat in the relative

coordinates, and hence we do not need to integrate the

nonlinear orbital dynamics. This is an advantage, because

even for long time horizons, the full nonlinear trajectory can

be obtained by solving a constrained least squares problem.

Once the chaser enters the line of sight (LOS) region,

we apply model predictive control (MPC) to find the final

trajectory that leads the chaser to the docking location. In this

close-in phase, we considered the state and input constraints.

Our future research is focused on designing efficient

observers and investigating the robustness of the resulting

trajectories. In this work, we did not consider measurement

noise, and had a process noise model that does not incorpo-

rate, e.g., the J2 perturbation due to the Earth’s flattening.

Furthermore, our analysis was centered on a target in a

uniform circular orbit, ignoring the more general case of an

elliptical orbit. Also note that we did not directly constrain

the thrust force in the first phase of motion outside of the

LOS cone, though an appropriate choice of objective function

that penalizes the trajectory coefficients is helpful. It is clear

that the mission timeline and interface points between the

boundary value problem and the MPC plan become variables

over which a grid search must be performed. Future work

should also investigate the effect of sensor or actuator failures

on the chaser satellite.
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