Ivan Papusha

Institute for Computational Engineering and Sciences University of Texas at Austin Austin, TX 78712

ipapusha@utexas.edu www.ivanpapusha.com September, 2017

Education

California Institute of Technology · Pasadena, CA

o PhD, Control and Dynamical Systems, 2016

Thesis: Robustness, Adaptation and Learning in Optimal Control

Advisor: Richard M. Murray

Stanford University · Stanford, CA

o MS, Electrical Engineering, 2011

o BS, Electrical Engineering (physics minor), 2011

Thomas Jefferson High School for Science and Technology · Alexandria, VA

o Advanced Studies Diploma, 2007

Positions held

Postdoctoral Fellow · Institute for Computational Engineering and Sciences, UT Austin, TX 2016 -Researched formal methods in autonomy.

Graduate Student Researcher · CDS Department, Caltech, Pasadena, CA Studied control theory, convex optimization, and adaptive control.

2011 - 2016

Research Analyst Intern · Prediction and Bidding Team, AOL Inc., Palo Alto, CA

2011

Engineered core machine learning models for ad valuation and placement.

Researcher · AI Laboratory, Stanford University, Stanford, CA

2010

Developed deep learning algorithms for image classification.

Researcher · Center for Integrated Systems, Stanford University, Stanford, CA Built an e-beam lithography machine from a refurbished electron microscope.

2009

Engineering Technician · Naval Research Laboratory, Washington, DC

2006, 2008

Wrote high performance tools for analyzing Landsat data.

Teaching

Course Developer/Instructor · Caltech

2015

o CDS270-2: Mathematical Methods in Control and System Engineering, Spring 2015

Teaching Assistant · Stanford, Caltech

2010-2014

- o CDS101/110a: Introductory Control Theory, Fall 2013, Fall 2014
- o EE102b: Signal Processing and Linear Systems II, Spring 2011
- o EE364a: Convex Optimization I, Winter 2011
- EE263: Linear Dynamical Systems, Fall 2010

Awards and activities

National Defense Science and Engineering Graduate Fellowship (NDSEG), 2012–2015

Caltech Powell Foundation Fellowship, 2011

AFCEA Scholarship, 2008–2010 Professional: IEEE member

Personal: STEM outreach, private pilot (in-training), scuba, rock climbing

Tools and expertise

Analysis: Matlab, Mathematica, CVX, YALMIP, Z3

Computer languages: C, C++, Python, Java, Hadoop, OpenMP, Haskell (basic) Robotics: ROS, SolidWorks, microcontrollers, PCB, 3D printing, mill/shop

Circuit design: Verilog, ModelSim, Cadence, Eagle, SPICE

Software

- $\circ\,$ AMNET: Python toolbox for affine multiplexing networks.
 - https://github.com/ipapusha/amnet
- SYDAR: (Synthesis Done Approximately Right) approximate control synthesis for hybrid automata. https://github.com/u-t-autonomous/sydar
- BOXQP: primal-dual quadratic program solver for Matlab with explicit offline factorization analysis. https://github.com/ipapusha/boxqp
- PCPADMM: solver for the robust PCA problem via principal component pursuit. http://ivanpapusha.com/code/pcp_admm.m

Publications

- [CJJ⁺17] M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, I. Papusha, H. A. Poonawala, and U. Topcu. Sequential Convex Programming for the Efficient Verification of Parametric MDPs, pp. 133–150. Springer, Apr. 2017. DOI: 10.1007/978-3-662-54580-5_8.
- [FPMM16] S. S. Farahani, I. Papusha, C. McGhan, and R. M. Murray. Constrained autonomous satellite docking via differential flatness and model predictive control. In *IEEE Conference on Decision and Control (CDC)*, pp. 3306–3311. Dec. 2016. DOI: 10.1109/CDC.2016.7798766.
- [FPT17] J. Fu, I. Papusha, and U. Topcu. Sampling-based approximate optimal control under temporal logic constraints. In ACM International Conference on Hybrid Systems: Computation and Control (HSCC), pp. 227–235. Apr. 2017. DOI: 10.1145/3049797.3049820.
- [HPB14] M. B. Horowitz, I. Papusha, and J. W. Burdick. Domain decomposition for stochastic optimal control. In *IEEE Conference on Decision and Control (CDC)*, pp. 1866–1873. Dec. 2014. DOI: 10.1109/CDC.2014.7039670.
- [Pap16] I. Papusha. Robustness, Adaptation, and Learning in Optimal Control. Ph.D. thesis, California Institute of Technology, May 2016. DOI: 10.7907/Z9F18WPB.
- [PFTM16] I. Papusha, J. Fu, U. Topcu, and R. M. Murray. Automata theory meets approximate dynamic programming: Optimal control with temporal logic constraints. In *IEEE Conference on Decision* and Control (CDC), pp. 434–440. Dec. 2016. DOI: 10.1109/CDC.2016.7798307.
- [PLM14] I. Papusha, E. Lavretsky, and R. M. Murray. Collaborative system identification via parameter consensus. In *American Control Conference (ACC)*, pp. 13–19. Jun. 2014. DOI: 10.1109/ACC.2014.6858938.
- [PM15] I. Papusha and R. M. Murray. Analysis of control systems on symmetric cones. In *IEEE Conference on Decision and Control (CDC)*, pp. 3971–3976. Dec. 2015. DOI: 10.1109/CDC.2015.7402836.
- [WPT17] M. Wen, I. Papusha, and U. Topcu. Learning from demonstrations with high-level side information. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 3055–3061. Aug. 2017. DOI: 10.24963/ijcai.2017/426.