Lecture 6. Foundations of LMIs in System
and Control Theory

lvan Papusha
CDS270-2: Mathematical Methods in Control and System Engineering

May 4, 2015

1/22



Logistics

e hw5 due this Wed, May 6
e do an easy problem or CYOA

e hw4 solutions posted online
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Riccati differential equation

Recall the Riccati boundary value problem,

~P=ATP+PA+Q—-PBR'BTP
P(T)=Qr

where P(t) = P(t)T = 0 is the variable.

e Q,Qr = 0and R > 0 given
e used in solving finite horizon LQR with terminal matrix Qt

e steady state solution as T — oo is the solution to the ARE,
0=A"P+PA+Q-PBR'BTP

e question. how do we solve for P in the ARE?
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Classical technique

Write down the optimality conditions for finite horizon LQR

T IRV T 1 T
minimize - / x(t)" Qx(t) 4+ u(t)’ Ru(t)dt+ EX( T) Qrx(T)
subject to xgé); = Ax(t) + Bu(t), te€(0,T)

e dual “variables” v : [0, T] — R"

e Lagrangian:

L(x, u,v) = ;/OTx(t)TQx(t)—i-u(t)TRu(t) dt+%x( )7 Qrx(T)

+ /O u(£)T(Ax(t) + Bu(t) — x(£)) dt + 1(0) T (x(0) — 2)
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Optimality conditions
Lagrangian:

1

L L TRu(t) dt + ~x(T)T Qrx(T
(><,LI,V)75/0 x(t)" Qx(t) + u(t) " Ru(t) dt + -x(T)" Qrx(T)

+ /0 (t)T(Ax(t) + Bu(t) — x(t)) dt + v(0)T (x(0) — z)

interior. for t € (0, T) we have:

e integration by parts:

t=T

T T
/0 (6)Tx(8) dt = v(t)Tx(8)| | — /O (6)Tx() dt

t=0
o Vil =Qx(t)+ATv(t)+i(t)=0

° Vu(t)L = Ru(t) + BTl/(t) =0
e VLl = Ax(t) + Bu(t) — x(t) =0
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Optimality conditions

boundaries.
o VX(T)L = QTX(T) — Z/(T) =0
L4 VV(O)L = X(O) —z=0

boundary value problem.

x(t) = Ax + Bu(t), x(0)=z
u(t)=—-R'BTu(t)
=(t) = Qx(t) + ATw(t),  v(T) = Qrx(T)

after substituting u(t) = —R~1BTv(t), we obtain

m _ [—AQ —BfA;BT] H . x(0) =z, u(T)=Qrx(T)

14 v

H
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Hamiltonian matrix

Consider the Hamiltonian matrix differential equation,

ol e I

H

with matrix variables X(t), Y(t) € R™*"

e the matrix H € R2"%2" js 3 Hamiltonian matrix

e such matrices obey JH = —H" J, where

J= [(/) _0/}’ J1=JT=-))

e the eigenvalues of H are symmetric about real and imaginary axes
proof. H is real, and H™v = \v implies HJv = —\Jv
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Relationship between Riccati and Hamiltonian ODEs

If X(t), Y(t) € R"™*" obey the Hamiltonian ODE

ol e e

then P(t) = Y(t)X(t)~! obeys the Riccati ODE,

~P=ATP+PA+Q—PBRBTP.

proof.
—P=—(YX 14+ Y(X 1)
=YX+ YXTIXXT! (using XX+ X(X~1) = 0)
= (QX +ATY)X 1+ YXYAX — BR7!IBTY)X !
=A"P+PA+ Q- PBR'BTP.
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Spectrum of the Hamiltonian matrix
The matrix P defines a similarity transformation,
I 0 A —BR7IBT][I 0
-P I |-Q —AT P

B A—BR-1BTP —BR-1BT
T |-(ATP+PA+ Q- PBR1BTP) —(A— BR-BTP)T

and if P further satisfies the ARE, then with K = —R~1BT P, this equals

A+BK —BRBT
0 —(A+BK)T|"

Thus if (A, B) is controllable, the eigenvalues of H are related to the
closed loop eigenvalues by

spec(H) = spec(A + BK) U spec(—(A + BK)).
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Solving the ARE
If A+ BK (stable) is diagonalizable,

T YA+ BK)T =A,

then
T-1 0 / 0 H [ 0| (T 0
0o TT||-P | P Il|o T°T7
[Tt 0][A+BK —BR'BT][T 0
o TT 0 —(A+BK)T||o T°T
[N =T BR'BTT-T
10 —A ’
hence
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Classical algorithm
We wish to solve! the ARE
ATP+PA+Q—-PBR'B"P=0, P>0

1. form the Hamiltonian matrix
 pp-1pT
H— [ A BR™'B ]

-Q _AT
2. find eigenvectors v, ..., v, of H corresponding to the n stable
eigenvalues, and partition as
X T nxn
o =[] e

3. the unique positive semidefinite solution to the ARE is given by

P:=yx!

Lfor more general discussion, involving Jordan forms, see JE Potter, “Matrix
Quadratic Solutions,” J. SIAM Appl. Math. 14(3):496-501, 1966
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Single dimension

In the n = 1 case, the ARE is

2b2
2ap+q—%:0

where the variable is p € R. We seek the positive solution, p..

p2b2
pr=inf{p|p=0,2ap+q—-——<0}
q 2,2

b
=sup{p|p20,2ap+q—pf20}

p2 b2

2ap+q —
(a<0)

p

b+
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Riccati inequality (nonstandard)

In the full matrix case, change the equality to (matrix) inequality,

ATP+PA+Q—-PBRIBTP =<0 (1)
fact. if (A, B) controllable and (A, Q'/?) observable, and P, = 0 with
ATPye + Pore A+ Q — Pye BR™IBTP =0, then Py is minimal, in the
sense that for any P satisfying (1) we have

ParejP-
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Riccati equation: nonconvex approach

This suggests that the ARE is a “closed-form” solution to the nonconvex
problem

minimize  x(0)7 Px(0)
subjectto ATP+PA+ Q- PBR™!BTP <0
P>0

danger. we cannot use a Schur complement here,

.
ATP+PA+Q PB] _,

T —1pT
ATP+PA+Q—PBRIBTP<0 & BT p e =

(because R £ 0)
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Riccati inequality (standard)

The “other” Riccati inequality is much more common,

ATP+PA+Q—PBRIBTP -0 (2)
fact. if (A, B) controllable and (A, Q'/?) observable, and P, = 0 with
ATPye + Pore A+ Q — Pye BR™IBTP =0, then P, is maximal, in the
sense that for any P satisfying (2) we have

P j PBI’E'
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Riccati equation: LMI approach

The standard Riccati inequality leads to the convex problem:

maximize  x(0)T Px(0)
subjectto ATP+PA+ Q—PBR™IBTP -0
P> 0.

Since R > 0, use a Schur complement to obtain the equivalent SDP:

maximize  x(0)7 Px(0)
ATP+PA+Q PB
BTP R
P=0

subject to >0
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Aside: SDP duality

Consider the SDP in inequality form
minimize ¢! x
subject to x1F+---+x,F,+ G <0
where x € R" is the variable.
e dual variable Z = Z7
e Lagrangian:
L(x,Z) = c"x+ Tr((x1FL + - - - + x,Fn + G)2)
=xi(c1 + Tr(FL2))+ -+ xa(cn + Tr(F,2)) + Tr(G2),

which is affine in x € R"”

e dual function:

g(Z) = ir;fL(x, Z) = {

—00, otherwise

Tr(GZ), Tr(FiZ)+c¢ =0, foralli=1,...

n

3
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Aside: SDP duality

primal SDP:

minimize ¢! x

subject to x1F+---+x,F,+ G <0

dual SDP:

maximize Tr(GZ)
subject to Tr(F;Z)4+¢ =0, i=1,...,n
Z>0

Strong duality obtains if primal is strictly feasible, i.e., there is an x € R”,

X1F1+"'+X,,F,,+G<O.
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Taking the dual

We wish to find the dual of the SDP

maximize  x(0)7 Px(0)
ATP+PA+Q PB

subject to [ BTP R

E

e dual variables associated with the two constraints:
tRAR i

Yy Z y ZT]EO’ W=w"=o0

e Lagrangian (note the signs):

L(P,Q,Y,Z,W) = x(0)Px(0)

ATP+PA+Q PB] [C) yT

+Tr{ BTP R||lY z

] + Tr(PW)
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Taking the dual
Simpifying the Lagrangian,
L(P,Q,Y,Z,W) =
= x(0)Px(0) + Tr BTp rlly 7
=Tr{XP+(ATP+PA+Q)Q+ PBY + BTPYT + RZ + PW}
=Tr{(X+ QAT + AQ+BY + YTBT + W)P} + Tr(QQ + RZ),

ATP+PA+Q PB] [Q YT]+Tr(PW)

where X = x(0)x(0)7 and we used the cyclic property of Tr(-)
The dual function is a supremum (when primal is “maximize”),

g(Q,Y,Z,W)=supL(P,Q,Y,Z, W)
P

[ T(QR+RZ), X+QAT+AQ+BY+YTBT + W =0
] oo, otherwise
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Taking the dual

Thus the dual is an SDP

minimize  Tr(QQ + RZ) _
subjectto X + QAT +AQ+BY +Y'BT + W =0

2 =0

e objective is the LQR cost
e primal constraint P = 0 is automatically satisfied, so W =0

o the dual variable turns out to be the state-input Gram matrix

¢ )=l o v

(for technical considerations, see Seungil's thesis)
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State-input Gram matrix

Consider the quantity

d

S Ox(O)7) = x(O)x(6)" + x(D)x(2)"

= (Ax + Bu)xT + x(Ax + Bu)T

=xxTAT + AxxT + Bux" + xu" B”.
Take the integral of both sides
x(00)x(00) T — x(0)x(0)" = / xxTAT 4 Axx™ + Bux” + xu" BT dt,
ﬁ_/ 0
=0 =X
which is the equality constraint
—X=QAT +AQ+BY +YT'BT =0,
where @ E fooo xxTdt, Y e fooo uxT dt, and Z e fooo uuT dt.
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