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Logistics

• hw5 due this Wed, May 6

• do an easy problem or CYOA

• hw4 solutions posted online
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Riccati differential equation

Recall the Riccati boundary value problem,

−Ṗ = ATP + PA+ Q − PBR−1BTP

P(T ) = QT

where P(t) = P(t)T � 0 is the variable.

• Q,QT � 0 and R ≻ 0 given

• used in solving finite horizon LQR with terminal matrix QT

• steady state solution as T → ∞ is the solution to the ARE,

0 = ATP + PA+ Q − PBR−1BTP

• question. how do we solve for P in the ARE?
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Classical technique

Write down the optimality conditions for finite horizon LQR

minimize
1

2

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt +
1

2
x(T )TQT x(T )

subject to ẋ(t) = Ax(t) + Bu(t), t ∈ (0,T )
x(0) = z

• dual “variables” ν : [0,T ] → Rn

• Lagrangian:

L(x , u, ν) =
1

2

∫ T

0

x(t)TQx(t)+u(t)TRu(t) dt+
1

2
x(T )TQT x(T )

+

∫ T

0

ν(t)T (Ax(t) + Bu(t)− ẋ(t)) dt + ν(0)T (x(0)− z)
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Optimality conditions

Lagrangian:

L(x , u, ν) =
1

2

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt +
1

2
x(T )TQT x(T )

+

∫ T

0

ν(t)T (Ax(t) + Bu(t)− ẋ(t)) dt + ν(0)T (x(0)− z)

interior. for t ∈ (0,T ) we have:

• integration by parts:

∫ T

0

ν(t)T ẋ(t) dt = ν(t)T x(t)
∣
∣
∣

t=T

t=0
−

∫ T

0

ν̇(t)T x(t) dt

• ∇x(t)L = Qx(t) + ATν(t) + ν̇(t) = 0

• ∇u(t)L = Ru(t) + BTν(t) = 0

• ∇ν(t)L = Ax(t) + Bu(t)− ẋ(t) = 0

5 / 22



Optimality conditions

boundaries.

• ∇x(T )L = QT x(T )− ν(T ) = 0

• ∇ν(0)L = x(0)− z = 0

boundary value problem.

ẋ(t) = Ax + Bu(t), x(0) = z

u(t) = −R−1BTν(t)

−ν̇(t) = Qx(t) + ATν(t), ν(T ) = QT x(T )

after substituting u(t) = −R−1BTν(t), we obtain

[
ẋ

ν̇

]

=

[
A −BR−1BT

−Q −AT

]

︸ ︷︷ ︸

H

[
x

ν

]

, x(0) = z , ν(T ) = QT x(T )

6 / 22



Hamiltonian matrix

Consider the Hamiltonian matrix differential equation,

[
Ẋ (t)

Ẏ (t)

]

=

[
A −BR−1BT

−Q −AT

]

︸ ︷︷ ︸

H

[
X (t)
Y (t)

]

,

with matrix variables X (t),Y (t) ∈ Rn×n

• the matrix H ∈ R2n×2n is a Hamiltonian matrix

• such matrices obey JH = −HT J, where

J =

[
0 −I

I 0

]

, (J−1 = JT = −J)

• the eigenvalues of H are symmetric about real and imaginary axes
proof. H is real, and HT v = λv implies HJv = −λJv
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Relationship between Riccati and Hamiltonian ODEs

If X (t),Y (t) ∈ Rn×n obey the Hamiltonian ODE

[
Ẋ (t)

Ẏ (t)

]

=

[
A −BR−1BT

−Q −AT

] [
X (t)
Y (t)

]

,

then P(t) = Y (t)X (t)−1 obeys the Riccati ODE,

−Ṗ = ATP + PA+ Q − PBR−1BTP .

proof.

−Ṗ = −(Ẏ X−1 + Y ˙(X−1))

= −Ẏ X−1 + YX−1ẊX−1 (using ẊX−1 + X ˙(X−1) = 0)

= (QX + ATY )X−1 + YX−1(AX − BR−1BTY )X−1

= ATP + PA+ Q − PBR−1BTP .
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Spectrum of the Hamiltonian matrix

The matrix P defines a similarity transformation,

[
I 0

−P I

] [
A −BR−1BT

−Q −AT

] [
I 0
P I

]

=

[
A− BR−1BTP −BR−1BT

−(ATP + PA+ Q − PBR−1BTP) −(A− BR−1BTP)T

]

and if P further satisfies the ARE, then with K = −R−1BTP , this equals

[
A+ BK −BR−1BT

0 −(A+ BK )T

]

.

Thus if (A,B) is controllable, the eigenvalues of H are related to the
closed loop eigenvalues by

spec(H) = spec(A+ BK ) ∪ spec(−(A+ BK )).
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Solving the ARE

If A+ BK (stable) is diagonalizable,

T−1(A+ BK )T = Λ,

then
[
T−1 0
0 TT

] [
I 0

−P I

]

H

[
I 0
P I

] [
T 0
0 T−T

]

=

[
T−1 0
0 TT

] [
A+ BK −BR−1BT

0 −(A+ BK )T

] [
T 0
0 T−T

]

=

[
Λ −T−1BR−1BTT−T

0 −Λ

]

,

hence

H

[
T

PT

]

=

[
T

PT

]

Λ.
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Classical algorithm

We wish to solve1 the ARE

ATP + PA+ Q − PBR−1BTP = 0, P � 0

1. form the Hamiltonian matrix

H =

[
A −BR−1BT

−Q −AT

]

2. find eigenvectors v1, . . . , vn of H corresponding to the n stable
eigenvalues, and partition as

[
v1 · · · vn

]
=

[
X

Y

]

=

[
T

PT

]

∈ R2n×n

3. the unique positive semidefinite solution to the ARE is given by

P := YX−1

1for more general discussion, involving Jordan forms, see JE Potter, “Matrix
Quadratic Solutions,” J. SIAM Appl. Math. 14(3):496–501, 1966
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Single dimension

In the n = 1 case, the ARE is

2ap + q −
p2b2

r
= 0

where the variable is p ∈ R. We seek the positive solution, p+.

q

p

2ap + q −
p2b2

r
(a < 0)

p− p+

2ap + q − p2b2

r
≤ 0

p+ = inf{p | p ≥ 0, 2ap + q −
p2b2

r
≤ 0}

= sup{p | p ≥ 0, 2ap + q −
p2b2

r
≥ 0}

12 / 22



Riccati inequality (nonstandard)

In the full matrix case, change the equality to (matrix) inequality,

ATP + PA+ Q − PBR−1BTP � 0 (1)

fact. if (A,B) controllable and (A,Q1/2) observable, and Pare � 0 with
ATPare + PareA+ Q − PareBR

−1BTP = 0, then Pare is minimal, in the
sense that for any P satisfying (1) we have

Pare � P .
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Riccati equation: nonconvex approach

This suggests that the ARE is a “closed-form” solution to the nonconvex
problem

minimize x(0)TPx(0)
subject to ATP + PA+ Q − PBR−1BTP � 0

P � 0

danger. we cannot use a Schur complement here,

ATP + PA+ Q − PBR−1BTP � 0 6⇔

[
ATP + PA+ Q PB

BTP R

]

� 0

(because R 6≺ 0)
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Riccati inequality (standard)

The “other” Riccati inequality is much more common,

ATP + PA+ Q − PBR−1BTP � 0 (2)

fact. if (A,B) controllable and (A,Q1/2) observable, and Pare � 0 with
ATPare + PareA+ Q − PareBR

−1BTP = 0, then Pare is maximal, in the
sense that for any P satisfying (2) we have

P � Pare.
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Riccati equation: LMI approach

The standard Riccati inequality leads to the convex problem:

maximize x(0)TPx(0)
subject to ATP + PA+ Q − PBR−1BTP � 0

P � 0.

Since R ≻ 0, use a Schur complement to obtain the equivalent SDP:

maximize x(0)TPx(0)

subject to

[
ATP + PA+ Q PB

BTP R

]

� 0

P � 0
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Aside: SDP duality

Consider the SDP in inequality form

minimize cT x

subject to x1F1 + · · ·+ xnFn + G � 0

where x ∈ Rn is the variable.

• dual variable Z = ZT

• Lagrangian:

L(x ,Z ) = cT x + Tr((x1F1 + · · ·+ xnFn + G )Z )

= x1(c1 + Tr(F1Z )) + · · ·+ xn(cn + Tr(FnZ )) + Tr(GZ ),

which is affine in x ∈ Rn

• dual function:

g(Z ) = inf
x
L(x ,Z ) =

{
Tr(GZ ), Tr(FiZ ) + ci = 0, for all i = 1, . . . , n
−∞, otherwise
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Aside: SDP duality

primal SDP:

minimize cT x

subject to x1F1 + · · ·+ xnFn + G � 0

dual SDP:

maximize Tr(GZ )
subject to Tr(FiZ ) + ci = 0, i = 1, . . . , n

Z � 0

Strong duality obtains if primal is strictly feasible, i.e., there is an x ∈ Rn,

x1F1 + · · ·+ xnFn + G ≺ 0.
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Taking the dual

We wish to find the dual of the SDP

maximize x(0)TPx(0)

subject to

[
ATP + PA+ Q PB

BTP R

]

� 0

P � 0

• dual variables associated with the two constraints:
[
Q̄ Y T

Y Z

]

=

[
Q̄T Y T

Y ZT

]

� 0, W = W T � 0

• Lagrangian (note the signs):

L(P , Q̄,Y ,Z ,W ) = x(0)Px(0)

+ Tr

[
ATP + PA+ Q PB

BTP R

] [
Q̄ Y T

Y Z

]

+ Tr(PW )
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Taking the dual

Simpifying the Lagrangian,

L(P , Q̄,Y ,Z ,W ) =

= x(0)Px(0) + Tr

[
ATP + PA+ Q PB

BTP R

] [
Q̄ Y T

Y Z

]

+ Tr(PW )

= Tr
{
XP + (ATP + PA+ Q)Q̄ + PBY + BTPY T + RZ + PW

}

= Tr
{
(X + Q̄AT + AQ̄ + BY + Y TBT +W )P

}
+ Tr(QQ̄ + RZ ),

where X = x(0)x(0)T and we used the cyclic property of Tr(·)

The dual function is a supremum (when primal is “maximize”),

g(Q̄,Y ,Z ,W ) = sup
P

L(P , Q̄,Y ,Z ,W )

=

{
Tr(QQ̄ + RZ ), X + Q̄AT + AQ̄ + BY + Y TBT +W = 0
∞, otherwise
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Taking the dual

Thus the dual is an SDP

minimize Tr(QQ̄ + RZ )
subject to X + Q̄AT + AQ̄ + BY + Y TBT +W = 0

[
Q̄ Y T

Y Z

]

� 0

• objective is the LQR cost

• primal constraint P � 0 is automatically satisfied, so W = 0

• the dual variable turns out to be the state-input Gram matrix

[
Q̄ Y T

Y Z

]

=

∫
∞

0

[
x(t)
u(t)

]
[
xT (t) uT (t)

]
dt

(for technical considerations, see Seungil’s thesis)
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State-input Gram matrix

Consider the quantity

d

dt
(x(t)x(t)T ) = ẋ(t)x(t)T + x(t)ẋ(t)T

= (Ax + Bu)xT + x(Ax + Bu)T

= xxTAT + AxxT + BuxT + xuTBT .

Take the integral of both sides

x(∞)x(∞)T
︸ ︷︷ ︸

=0

− x(0)x(0)T
︸ ︷︷ ︸

=X

=

∫
∞

0

xxTAT + AxxT + BuxT + xuTBT dt,

which is the equality constraint

−X = Q̄AT + AQ̄ + BY + Y TBT = 0,

where Q̄
∆
=

∫
∞

0
xxT dt, Y

∆
=

∫
∞

0
uxT dt, and Z

∆
=

∫
∞

0
uuT dt.
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