Lecture 6. Foundations of LMIs in System and Control Theory

Ivan Papusha

CDS270-2: Mathematical Methods in Control and System Engineering

May 4, 2015

Logistics

- hw5 due this Wed, May 6
 - do an easy problem or CYOA
- hw4 solutions posted online

Riccati differential equation

Recall the Riccati boundary value problem,

$$-\dot{P} = A^T P + PA + Q - PBR^{-1}B^T P$$
$$P(T) = Q_T$$

where $P(t) = P(t)^T \succeq 0$ is the variable.

- $Q, Q_T \succeq 0$ and $R \succ 0$ given
- used in solving finite horizon LQR with terminal matrix Q_T
- steady state solution as $T
 ightarrow \infty$ is the solution to the ARE,

$$0 = A^T P + PA + Q - PBR^{-1}B^T P$$

• question. how do we solve for P in the ARE?

Classical technique

Write down the optimality conditions for finite horizon LQR

minimize
$$\frac{1}{2} \int_{0}^{T} x(t)^{T} Q x(t) + u(t)^{T} R u(t) dt + \frac{1}{2} x(T)^{T} Q_{T} x(T)$$

subject to $\dot{x}(t) = A x(t) + B u(t), \quad t \in (0, T)$
 $x(0) = z$

• dual "variables"
$$\nu : [0, T] \rightarrow \mathbf{R}^n$$

Lagrangian:

$$L(x, u, \nu) = \frac{1}{2} \int_0^T x(t)^T Q x(t) + u(t)^T R u(t) dt + \frac{1}{2} x(T)^T Q_T x(T) + \int_0^T \nu(t)^T (A x(t) + B u(t) - \dot{x}(t)) dt + \nu(0)^T (x(0) - z)$$

Optimality conditions

Lagrangian:

$$L(x, u, \nu) = \frac{1}{2} \int_0^T x(t)^T Q x(t) + u(t)^T R u(t) dt + \frac{1}{2} x(T)^T Q_T x(T) + \int_0^T \nu(t)^T (A x(t) + B u(t) - \dot{x}(t)) dt + \nu(0)^T (x(0) - z)$$

interior. for $t \in (0, T)$ we have:

integration by parts:

$$\int_0^T \nu(t)^T \dot{x}(t) \, dt = \nu(t)^T x(t) \Big|_{t=0}^{t=T} - \int_0^T \dot{\nu}(t)^T x(t) \, dt$$

•
$$\nabla_{x(t)}L = Qx(t) + A^T \nu(t) + \dot{\nu}(t) = 0$$

•
$$\nabla_{u(t)}L = Ru(t) + B^T\nu(t) = 0$$

• $\nabla_{\nu(t)}L = Ax(t) + Bu(t) - \dot{x}(t) = 0$

Optimality conditions

boundaries.

•
$$\nabla_{x(T)}L = Q_T x(T) - \nu(T) = 0$$

• $\nabla_{\nu(0)}L = x(0) - z = 0$

boundary value problem.

$$\begin{aligned} \dot{x}(t) &= Ax + Bu(t), \quad x(0) = z \\ u(t) &= -R^{-1}B^{T}\nu(t) \\ -\dot{\nu}(t) &= Qx(t) + A^{T}\nu(t), \quad \nu(T) = Q_{T}x(T) \end{aligned}$$

after substituting $u(t) = -R^{-1}B^T\nu(t)$, we obtain

$$\begin{bmatrix} \dot{x} \\ \dot{\nu} \end{bmatrix} = \underbrace{\begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix}}_{H} \begin{bmatrix} x \\ \nu \end{bmatrix}, \quad x(0) = z, \quad \nu(T) = Q_T x(T)$$

Hamiltonian matrix

Consider the Hamiltonian matrix differential equation,

$$\begin{bmatrix} \dot{X}(t) \\ \dot{Y}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix}}_{H} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix},$$

with matrix variables $X(t), Y(t) \in \mathbf{R}^{n \times n}$

- the matrix $H \in \mathbf{R}^{2n \times 2n}$ is a *Hamiltonian* matrix
- such matrices obey $JH = -H^T J$, where

$$J = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}, \quad (J^{-1} = J^T = -J)$$

• the eigenvalues of H are symmetric about real and imaginary axes **proof.** H is real, and $H^T v = \lambda v$ implies $HJv = -\lambda Jv$

Relationship between Riccati and Hamiltonian ODEs

If $X(t), Y(t) \in \mathbf{R}^{n \times n}$ obey the Hamiltonian ODE

$$\begin{bmatrix} \dot{X}(t) \\ \dot{Y}(t) \end{bmatrix} = \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix},$$

then $P(t) = Y(t)X(t)^{-1}$ obeys the Riccati ODE,

$$-\dot{P} = A^T P + PA + Q - PBR^{-1}B^T P.$$

proof.

$$\begin{aligned} -\dot{P} &= -(\dot{Y}X^{-1} + Y(\dot{X}^{-1})) \\ &= -\dot{Y}X^{-1} + YX^{-1}\dot{X}X^{-1} \quad (\text{using } \dot{X}X^{-1} + X(\dot{X}^{-1}) = 0) \\ &= (QX + A^TY)X^{-1} + YX^{-1}(AX - BR^{-1}B^TY)X^{-1} \\ &= A^TP + PA + Q - PBR^{-1}B^TP. \end{aligned}$$

Spectrum of the Hamiltonian matrix

The matrix P defines a similarity transformation,

$$\begin{bmatrix} I & 0 \\ -P & I \end{bmatrix} \begin{bmatrix} A & -BR^{-1}B^{T} \\ -Q & -A^{T} \end{bmatrix} \begin{bmatrix} I & 0 \\ P & I \end{bmatrix}$$
$$= \begin{bmatrix} A - BR^{-1}B^{T}P & -BR^{-1}B^{T} \\ -(A^{T}P + PA + Q - PBR^{-1}B^{T}P) & -(A - BR^{-1}B^{T}P)^{T} \end{bmatrix}$$

and if P further satisfies the ARE, then with $K = -R^{-1}B^T P$, this equals

$$\begin{bmatrix} A + BK & -BR^{-1}B^T \\ 0 & -(A + BK)^T \end{bmatrix}$$

Thus if (A, B) is controllable, the eigenvalues of H are related to the closed loop eigenvalues by

$$\operatorname{spec}(H) = \operatorname{spec}(A + BK) \cup \operatorname{spec}(-(A + BK)).$$

Solving the ARE

If A + BK (stable) is diagonalizable,

$$T^{-1}(A+BK)T=\Lambda,$$

then

$$\begin{bmatrix} T^{-1} & 0 \\ 0 & T^T \end{bmatrix} \begin{bmatrix} I & 0 \\ -P & I \end{bmatrix} H \begin{bmatrix} I & 0 \\ P & I \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & T^-T \end{bmatrix}$$
$$= \begin{bmatrix} T^{-1} & 0 \\ 0 & T^T \end{bmatrix} \begin{bmatrix} A + BK & -BR^{-1}B^T \\ 0 & -(A + BK)^T \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & T^-T \end{bmatrix}$$
$$= \begin{bmatrix} \Lambda & -T^{-1}BR^{-1}B^TT^{-T} \\ 0 & -\Lambda \end{bmatrix} ,$$

hence

$$H\begin{bmatrix}T\\PT\end{bmatrix} = \begin{bmatrix}T\\PT\end{bmatrix}\Lambda.$$

Classical algorithm

We wish to solve 1 the ARE

$$A^T P + PA + Q - PBR^{-1}B^T P = 0, \quad P \succeq 0$$

1. form the Hamiltonian matrix

$$\mathcal{H} = \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix}$$

 find eigenvectors v₁,..., v_n of H corresponding to the n stable eigenvalues, and partition as

$$\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} T \\ PT \end{bmatrix} \in \mathbf{R}^{2n \times n}$$

3. the unique positive semidefinite solution to the ARE is given by

$$P := YX^{-1}$$

¹for more general discussion, involving Jordan forms, see JE Potter, "Matrix Quadratic Solutions," *J. SIAM Appl. Math.* 14(3):496–501, 1966

Single dimension

In the n = 1 case, the ARE is

$$2ap+q-\frac{p^2b^2}{r}=0$$

where the variable is $p \in \mathbf{R}$. We seek the positive solution, p_+ .

Riccati inequality (nonstandard)

In the full matrix case, change the equality to (matrix) inequality,

$$A^{T}P + PA + Q - PBR^{-1}B^{T}P \leq 0$$
⁽¹⁾

fact. if (A, B) controllable and $(A, Q^{1/2})$ observable, and $P_{\text{are}} \succeq 0$ with $A^T P_{\text{are}} + P_{\text{are}}A + Q - P_{\text{are}}BR^{-1}B^TP = 0$, then P_{are} is minimal, in the sense that for any P satisfying (1) we have

$$P_{\mathsf{are}} \preceq P$$
.

Riccati equation: nonconvex approach

This suggests that the ARE is a "closed-form" solution to the nonconvex problem

minimize
$$x(0)^T P x(0)$$

subject to $A^T P + P A + Q - P B R^{-1} B^T P \preceq 0$
 $P \succeq 0$

danger. we cannot use a Schur complement here,

$$A^{T}P + PA + Q - PBR^{-1}B^{T}P \preceq 0 \quad \Leftrightarrow \quad \begin{bmatrix} A^{T}P + PA + Q & PB \\ B^{T}P & R \end{bmatrix} \preceq 0$$

(because $R \neq 0$)

Riccati inequality (standard)

The "other" Riccati inequality is much more common,

$$A^{T}P + PA + Q - PBR^{-1}B^{T}P \succeq 0$$
⁽²⁾

fact. if (A, B) controllable and $(A, Q^{1/2})$ observable, and $P_{\text{are}} \succeq 0$ with $A^T P_{\text{are}} + P_{\text{are}}A + Q - P_{\text{are}}BR^{-1}B^TP = 0$, then P_{are} is maximal, in the sense that for any P satisfying (2) we have

 $P \preceq P_{are}$.

Riccati equation: LMI approach

The standard Riccati inequality leads to the convex problem:

maximize
$$x(0)^T P x(0)$$

subject to $A^T P + PA + Q - PBR^{-1}B^T P \succeq 0$
 $P \succeq 0.$

Since $R \succ 0$, use a Schur complement to obtain the equivalent SDP:

maximize
$$x(0)^T P x(0)$$

subject to $\begin{bmatrix} A^T P + P A + Q & P B \\ B^T P & R \end{bmatrix} \succeq 0$
 $P \succeq 0$

Aside: SDP duality

Consider the SDP in inequality form

minimize
$$c^T x$$

subject to $x_1F_1 + \cdots + x_nF_n + G \preceq 0$

where $x \in \mathbf{R}^n$ is the variable.

- dual variable $Z = Z^T$
- Lagrangian:

$$L(x,Z) = c^T x + \operatorname{Tr}((x_1F_1 + \dots + x_nF_n + G)Z)$$

= $x_1(c_1 + \operatorname{Tr}(F_1Z)) + \dots + x_n(c_n + \operatorname{Tr}(F_nZ)) + \operatorname{Tr}(GZ),$

which is affine in $x \in \mathbf{R}^n$

• dual function:

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} \mathbf{Tr}(GZ), & \mathbf{Tr}(F_iZ) + c_i = 0, \text{ for all } i = 1, \dots, n \\ -\infty, & \text{otherwise} \end{cases}$$

Aside: SDP duality

primal SDP:

minimize
$$c^T x$$

subject to $x_1F_1 + \cdots + x_nF_n + G \leq 0$

dual SDP:

maximize
$$\mathbf{Tr}(GZ)$$

subject to $\mathbf{Tr}(F_iZ) + c_i = 0, \quad i = 1, ..., n$
 $Z \succeq 0$

Strong duality obtains if primal is strictly feasible, *i.e.*, there is an $x \in \mathbf{R}^n$,

$$x_1F_1+\cdots+x_nF_n+G\prec 0.$$

Taking the dual

We wish to find the dual of the SDP

maximize
$$x(0)^T P x(0)$$

subject to $\begin{bmatrix} A^T P + P A + Q & P B \\ B^T P & R \end{bmatrix} \succeq 0$
 $P \succeq 0$

• dual variables associated with the two constraints:

$$\begin{bmatrix} \bar{Q} & Y^T \\ Y & Z \end{bmatrix} = \begin{bmatrix} \bar{Q}^T & Y^T \\ Y & Z^T \end{bmatrix} \succeq 0, \quad W = W^T \succeq 0$$

• Lagrangian (note the signs):

$$L(P, \bar{Q}, Y, Z, W) = x(0)Px(0) + \operatorname{Tr} \begin{bmatrix} A^T P + PA + Q & PB \\ B^T P & R \end{bmatrix} \begin{bmatrix} \bar{Q} & Y^T \\ Y & Z \end{bmatrix} + \operatorname{Tr}(PW)$$

Taking the dual

Simpifying the Lagrangian,

$$L(P, \bar{Q}, Y, Z, W) =$$

$$= x(0)Px(0) + \operatorname{Tr} \begin{bmatrix} A^{T}P + PA + Q & PB \\ B^{T}P & R \end{bmatrix} \begin{bmatrix} \bar{Q} & Y^{T} \\ Y & Z \end{bmatrix} + \operatorname{Tr}(PW)$$

$$= \operatorname{Tr} \{ XP + (A^{T}P + PA + Q)\bar{Q} + PBY + B^{T}PY^{T} + RZ + PW \}$$

$$= \operatorname{Tr} \{ (X + \bar{Q}A^{T} + A\bar{Q} + BY + Y^{T}B^{T} + W)P \} + \operatorname{Tr}(Q\bar{Q} + RZ),$$

where $X = x(0)x(0)^T$ and we used the cyclic property of $\mathbf{Tr}(\cdot)$

The dual function is a supremum (when primal is "maximize"),

$$g(Q, Y, Z, W) = \sup_{P} L(P, Q, Y, Z, W)$$

$$= \begin{cases} \mathbf{Tr}(Q\bar{Q} + RZ), & X + \bar{Q}A^{T} + A\bar{Q} + BY + Y^{T}B^{T} + W = 0\\ \infty, & \text{otherwise} \end{cases}$$

Taking the dual

Thus the dual is an SDP

minimize
$$\mathbf{Tr}(Q\bar{Q} + RZ)$$

subject to $X + \bar{Q}A^T + A\bar{Q} + BY + Y^TB^T + W = 0$
 $\begin{bmatrix} \bar{Q} & Y^T \\ Y & Z \end{bmatrix} \succeq 0$

- objective is the LQR cost
- primal constraint $P \succeq 0$ is automatically satisfied, so W = 0
- the dual variable turns out to be the state-input Gram matrix

$$\begin{bmatrix} \bar{Q} & Y^T \\ Y & Z \end{bmatrix} = \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \begin{bmatrix} x^T(t) & u^T(t) \end{bmatrix} dt$$

(for technical considerations, see Seungil's thesis)

State-input Gram matrix

Consider the quantity

$$\frac{d}{dt}(x(t)x(t)^{T}) = \dot{x}(t)x(t)^{T} + x(t)\dot{x}(t)^{T}$$
$$= (Ax + Bu)x^{T} + x(Ax + Bu)^{T}$$
$$= xx^{T}A^{T} + Axx^{T} + Bux^{T} + xu^{T}B^{T}.$$

Take the integral of both sides

$$\underbrace{x(\infty)x(\infty)^{T}}_{=0} - \underbrace{x(0)x(0)^{T}}_{=X} = \int_{0}^{\infty} xx^{T}A^{T} + Axx^{T} + Bux^{T} + xu^{T}B^{T} dt,$$

which is the equality constraint

$$-X = \bar{Q}A^{T} + A\bar{Q} + BY + Y^{T}B^{T} = 0,$$

where $\bar{Q} \triangleq \int_0^\infty x x^T dt$, $Y \triangleq \int_0^\infty u x^T dt$, and $Z \triangleq \int_0^\infty u u^T dt$.