
Ivan Papusha1 Jie Fu2 Ufuk Topcu1
Richard Murray3

1University of Texas at Austin
2Worcester Polytechnic Institute

3California Institute of Technology

Automata Theory Meets Approximate
Dynamic Programming: Optimal Control with

Temporal Logic Constraints

2

A Synthesis Problem

Automatically synthesize a control protocol that
• manages the system behavior and
• is provably correct with respect to the specifications and optimal.

Given:

• System model
-both continuous & discrete evolution
-actuation limitations
-modeling uncertainties & disturbances

ẋ = f(x, u, �)
g(x, u) � 0

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

• Specifications
-high-level requirements
-optimality criteria

Detour: Specifying Behavior with Temporal Logic

3

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

(only a dialect in a large family of languages)

Detour: Specifying Behavior with Temporal Logic

3

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

Traffic rules:
• No collision
• Obey speed limits
• Stay in travel lane unless blocked
• Intersection precedence & merging, stop line, passing,...

⇤ (dist(x,Obs) � Xsafe ^ dist(x,Loc(Veh)) � Xsafe)

⇤ ((x 2 Reduced Speed Zone) ! (v  vreduced))

position : x

Reduced Speed Zone ck pt

Goals:
• Eventually visit the check point
• Every time check point is reached, eventually come to start

⌃(x = ck pt)

⇤((x = ck pt) ! ⌃(x = start))

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

(only a dialect in a large family of languages)

Detour: Specifying Behavior with Temporal Logic

3

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

Traffic rules:
• No collision
• Obey speed limits
• Stay in travel lane unless blocked
• Intersection precedence & merging, stop line, passing,...

⇤ (dist(x,Obs) � Xsafe ^ dist(x,Loc(Veh)) � Xsafe)

⇤ ((x 2 Reduced Speed Zone) ! (v  vreduced))

position : x

Reduced Speed Zone ck pt

Goals:
• Eventually visit the check point
• Every time check point is reached, eventually come to start

⌃(x = ck pt)

⇤((x = ck pt) ! ⌃(x = start))

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

(only a dialect in a large family of languages)

4

A widely explored approach

4

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

4

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

Iterative
graph search

Two-player,
turn-based

graph game

Constrained,
finite-horizon

optimal control

4

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

Iterative
graph search

Two-player,
turn-based

graph game

Constrained,
finite-horizon

optimal control

(Finite-state) abstraction with “simulation” relation

Abstraction with “simulation” relation

5

Finite-state abstraction with “simulation” relations

Every discrete transition can be “executed”
under the continuous dynamics

5

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

5

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

5

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

5

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

Xinitial

Xtarget

?

5

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

Xinitial

Xtarget

?

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×(discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and)! ≺*!)" for any ! <).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

∈ '#,!+1 and for the case

where it can only transition to 0 ′
∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

Practically:
Complex partitions are needed.

Theoretically:
Finite yet humongous discrete
state spaces may be needed. 22

··
·2

p

Why is discretization not necessarily a good idea?

6

An alternative to explicit discretization:
no explicit discretization

6

An alternative to explicit discretization:
no explicit discretization

CDC 2016

6

An alternative to explicit discretization:
no explicit discretization

CDC 2016

TAC 2015

7

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

continuous time, continuous state
with assumptions on f for existence,
uniqueness and Zeno-freeness of solutions

System model

7

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

System model

Labeling function L : X ! ⌃ = 2AP

L(x) = {x 2 C}

L(x) = {x 2 B}

L(x) = {x 2 A}

(what properties hold at a given state?)

7

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

0 = t0 < t1 < · · · < tN = T

L(x(t�k)) 6= L(x(t+k))

L(x(t)) = L(x(tk)), tk  t < tk+1

(what properties hold at a given state?)

7

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

0 = t0 < t1 < · · · < tN = T

L(x(t�k)) 6= L(x(t+k))

L(x(t)) = L(x(tk)), tk  t < tk+1

B(�(x0, [0, T], u)) = �0�1 . . .�N�1 2 ⌃⇤

�k = L(x(tk))with

“discrete” behavior:

(what properties hold at a given state?)

7

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Co-safe temporal logic specification '

A final state and a final time T.
xf 2 X

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

B(�(x0, [0, T], u)) = �0�1 . . .�N�1 2 ⌃⇤

�k = L(x(tk))with

(every satisfying word has a finite “good” prefix)

(what properties hold at a given state?)

8

De-tour: Automaton representation for temporal logic

Machine-interpretable representation
of all words that satisfy the
corresponding temporal logic formula

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Deterministic finite automata are
sufficient for co-safe linear temporal
logic formulas

9

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

+

Problem statement (2)

Model Specification '

A'

9

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

+

Problem statement (2)

Model Specification '

A'

Compute a control law u that minimizes
Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

subject to x(T) = xf and

B(�(x0, [0, T], u)) 2 L(A').

l: loss function
s: cost of mode transition

all discrete behavior
satisfies the specification

10

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Related work

Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

Temporal logic specification

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

restrict to simple specifications make it a formal methods problem

10

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Related work

Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

Temporal logic specification

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

restrict to simple specifications make it a formal methods problem

Hedlund & Rantzer
(optimal control for hybrid systems
+ convex dynamic programming)

Xu & Antsaklis
(optimal control for switched systems)

Kariotoglou, et al.
(approximate dynamic programming
for stochastic reachability)

Habets & Belta

Wongpiromsarn, et al.

Wolff, et al.

Fainekos, et al.

11

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

11

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q

11

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q

•The continuous state x evolves according to the vector field.
•The evolution of the discrete state q is governed by the automaton.
•A discrete transition is triggered when x crosses a boundary between two labeled
regions.

11

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q
R = {Rq | q 2 Q}
Rq refers to x reachable
while the automaton is in
or transitions to mode q

a collection of guard
regions in X:
For each q, x evolves
inside Rq until it enters a
guard region G(q,σ,q’) and
a transition to q’ is made

•The continuous state x evolves according to the vector field.
•The evolution of the discrete state q is governed by the automaton.
•A discrete transition is triggered when x crosses a boundary between two labeled
regions.

12

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

12

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′,σ, q) ∈ E,

and L(x) = σ}, q ∈ Q,σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ ∂Rq,σ | δ(q, L(x)) = q′},

for all e = (q,σ, q′) ∈ E.

Each region Rq refers to the continuous states x ∈ X
that are reachable while the automaton is in or transitions
to mode q. For each discrete mode q, the continuous state
evolves inside Rq until it enters a guard region G(q,σ,q′) and
a discrete transition to mode q′ is made.
We can solve the optimal control problem with dynamic

programming by ensuring that the optimal value function
is zero at every accepting state of the automaton. Let
V ⋆ : X × Q → R be the optimal cost-to-go in (2),
with V ⋆(x0, q0) denoting the optimal objective value when
starting at initial condition (x0, q0), subject to the discrete
behavior specification and final condition x(T) = xf . For
simplicity, we assume that V ⋆ has no explicit dependence
on t, which corresponds to searching for a stationary policy,
although this assumption can be relaxed at the expense of
having to choose a time-dependent basis when searching
for an approximate value function later. In this setting, the
cost-to-go satisfies a collection of mixed continuous-discrete
Hamilton–Jacobi–Bellman (HJB) equations,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{V ⋆(x, q′) + s(x, q, q′)} ,

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf), ∀qf ∈ F. (5)

Equation (3) says that V ⋆(x, q) is an optimal cost-to-go
inside the regions where the label remains constant. The
next equation (4) is a shortest-path equality that must hold at
every continuous state x where discrete state transition to a
different label can happen. Finally, the boundary equation (5)
fixes the value function.
We can interpret these HJB conditions intuitively as a

single-sink shortest-path problem on a directed weighted
graph, where nodes with the same label are treated together
and the weights are the incremental costs ℓ(x, u)dt or the
discrete transition costs s(x, q, q′) (Fig. 1). As long as the
continuous state evolves within the same labeled region,
the value function is subject to the optimality condition
associated with the region that contains that state. As a
result, the continous-state condition (3) must hold on the
interior nodes (white), while the discrete-state switching
condition (4) must hold at the boundary nodes (black).
The graph interpretation also clarifies why automata de-

rived from co-safe LTL specifications fit within the dynamic

q q′

u

Fig. 1. Finite state interpretation of HJB conditions (3)–(5)

programming framework but not automata derived from more
general temporal logics: the semantics of general LTL are
over infinite execution traces, and require Büchi automata
whose acceptance conditions do not readily translate to a
single-sink shortest-path problem. Nevertheless, we believe
the co-safe restriction is a strength, rather than weakness,
because co-safe LTL is still highly expressive, and the
solution methods we describe in the next section are efficient
for many classes of problems, relatively simple to implement,
and can be readily automated.

IV. LOWER BOUNDS ON THE OPTIMAL COST

Let V ⋆ be a value function satisfying the hybrid HJB
conditions (3)–(5), and suppose V is another function that
satisfies the following inequalities,

0 ≤
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,
(6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(7)

0 = V (xf , qf), ∀qf ∈ F. (8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated
by [19], [22], [23]. The inequalities (6)–(8) characterize a set
of optimal value function under-estimators, among which is
the optimal value function V ⋆ itself. The difference between
the equalities (3)–(5) and the inequalities (6)–(8) is the
removal of the minimum operators in favor of semi-infinite
constraints and the addition of pointwise inequalities.
The strength of using inequalities to search over value

function under-estimators, instead of solving the HJB equa-
tions directly, lies in an ability to come up with approximate
value functions and ADP policies whose suboptimality can
be quantified [24]. The ADP method is enabled by the fact
that we can come up with sufficient conditions that imply
(6)–(8), and relies on finding the largest approximate value
function that is a pointwise underestimate of V ⋆. Thus we
solve the problem

maximize V (x0, q0)
subject to (6), (7), and (8) (9)

over the variables parameterizing V .

While the labels remain constant:

Over discrete transitions:

12

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′,σ, q) ∈ E,

and L(x) = σ}, q ∈ Q,σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ ∂Rq,σ | δ(q, L(x)) = q′},

for all e = (q,σ, q′) ∈ E.

Each region Rq refers to the continuous states x ∈ X
that are reachable while the automaton is in or transitions
to mode q. For each discrete mode q, the continuous state
evolves inside Rq until it enters a guard region G(q,σ,q′) and
a discrete transition to mode q′ is made.
We can solve the optimal control problem with dynamic

programming by ensuring that the optimal value function
is zero at every accepting state of the automaton. Let
V ⋆ : X × Q → R be the optimal cost-to-go in (2),
with V ⋆(x0, q0) denoting the optimal objective value when
starting at initial condition (x0, q0), subject to the discrete
behavior specification and final condition x(T) = xf . For
simplicity, we assume that V ⋆ has no explicit dependence
on t, which corresponds to searching for a stationary policy,
although this assumption can be relaxed at the expense of
having to choose a time-dependent basis when searching
for an approximate value function later. In this setting, the
cost-to-go satisfies a collection of mixed continuous-discrete
Hamilton–Jacobi–Bellman (HJB) equations,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{V ⋆(x, q′) + s(x, q, q′)} ,

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf), ∀qf ∈ F. (5)

Equation (3) says that V ⋆(x, q) is an optimal cost-to-go
inside the regions where the label remains constant. The
next equation (4) is a shortest-path equality that must hold at
every continuous state x where discrete state transition to a
different label can happen. Finally, the boundary equation (5)
fixes the value function.
We can interpret these HJB conditions intuitively as a

single-sink shortest-path problem on a directed weighted
graph, where nodes with the same label are treated together
and the weights are the incremental costs ℓ(x, u)dt or the
discrete transition costs s(x, q, q′) (Fig. 1). As long as the
continuous state evolves within the same labeled region,
the value function is subject to the optimality condition
associated with the region that contains that state. As a
result, the continous-state condition (3) must hold on the
interior nodes (white), while the discrete-state switching
condition (4) must hold at the boundary nodes (black).
The graph interpretation also clarifies why automata de-

rived from co-safe LTL specifications fit within the dynamic

q q′

u

Fig. 1. Finite state interpretation of HJB conditions (3)–(5)

programming framework but not automata derived from more
general temporal logics: the semantics of general LTL are
over infinite execution traces, and require Büchi automata
whose acceptance conditions do not readily translate to a
single-sink shortest-path problem. Nevertheless, we believe
the co-safe restriction is a strength, rather than weakness,
because co-safe LTL is still highly expressive, and the
solution methods we describe in the next section are efficient
for many classes of problems, relatively simple to implement,
and can be readily automated.

IV. LOWER BOUNDS ON THE OPTIMAL COST

Let V ⋆ be a value function satisfying the hybrid HJB
conditions (3)–(5), and suppose V is another function that
satisfies the following inequalities,

0 ≤
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,
(6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(7)

0 = V (xf , qf), ∀qf ∈ F. (8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated
by [19], [22], [23]. The inequalities (6)–(8) characterize a set
of optimal value function under-estimators, among which is
the optimal value function V ⋆ itself. The difference between
the equalities (3)–(5) and the inequalities (6)–(8) is the
removal of the minimum operators in favor of semi-infinite
constraints and the addition of pointwise inequalities.
The strength of using inequalities to search over value

function under-estimators, instead of solving the HJB equa-
tions directly, lies in an ability to come up with approximate
value functions and ADP policies whose suboptimality can
be quantified [24]. The ADP method is enabled by the fact
that we can come up with sufficient conditions that imply
(6)–(8), and relies on finding the largest approximate value
function that is a pointwise underestimate of V ⋆. Thus we
solve the problem

maximize V (x0, q0)
subject to (6), (7), and (8) (9)

over the variables parameterizing V .

While the labels remain constant:

Over discrete transitions:

At the “terminal” state:

0 = V

?(xf , qf), 8qf 2 F

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q
(t

)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

13

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

13

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0)  V

?(x0, q0)

V: approximate value function

13

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�
8x 2 Rq, 8q 2 Qcompare to

compare to V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)} 8x 2 Ge, 8e = (q,�, q0) 2 E

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0)  V

?(x0, q0)

V: approximate value function

13

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�
8x 2 Rq, 8q 2 Qcompare to

compare to V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)} 8x 2 Ge, 8e = (q,�, q0) 2 E

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0)  V

?(x0, q0)

V: approximate value function

V ⇤ = TV ⇤

V  TV) V  V ⇤

Intuition from purely
discrete version:

14

Approximate value function and approximately optimal control law

Search for approximate value function that maximizes V(x0,q0).

Parametrize V with pre-specified basis functions ϕ:

V (x, q) =

nqX

i=1

wi,q�i,q(x)
basis:
function of x,
indexed by q

(one of the many scalarizations)

14

Approximate value function and approximately optimal control law

Search for approximate value function that maximizes V(x0,q0).

Parametrize V with pre-specified basis functions ϕ:

V (x, q) =

nqX

i=1

wi,q�i,q(x)
basis:
function of x,
indexed by q

u(x, q) = argmin
u2U

⇢
@V (x, q)

@x

· f(x, u) + `(x, u)

�

Given V, an approximately optimal control law:

Mode switchings are autonomous, driven by the evolution of x.

(one of the many scalarizations)

15

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

15

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0 

x

1

�T 
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

� 
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

15

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0 

x

1

�T 
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

� 
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

semi-infinite optimization problem

16

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0 

x

1

�T 
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

� 
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

16

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0 

x

1

�T 
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

� 
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

M0,M1 : Rn ! R
M1 � 0) M0 � 0

*
9� � 0 s.t.

M0(⇣)� �M1(⇣) � 0 8⇣

“S-procedure”

16

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0 

x

1

�T 
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

� 
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Are Rq and Ge quadratically representable?
•Can be decided based on the atomic propositions in the specification.

17

Example

A =


2 �2
1 0

�
, B =


1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

17

Example

A =


2 �2
1 0

�
, B =


1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Specification

a

b

c

A B C

d
e
f

17

Example

A =


2 �2
1 0

�
, B =


1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Specification

a

b

c

A B C

d
e
f

Acl
q = A�BR�1BTP ?

q

Compare the spectra of the closed-
loop matrix in different modes

�(Acl
q0) = {0.786± 1.144i}

�(Acl
q4) = {�1± i}

18

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

18

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

Hope for scalability?

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5

8x 2 Rq, 8u 2 U , 8q 2 Q

Scalability goal:
“Can we synthesize temporal-logic-
constrained controllers for systems
with 50 continuous states?”

18

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

Hope for scalability?

0 

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5

8x 2 Rq, 8u 2 U , 8q 2 Q

Scalability goal:
“Can we synthesize temporal-logic-
constrained controllers for systems
with 50 continuous states?”

Conservatism — S-procedure and basis selection

Policy is approximately optimal (bounds on sub optimality possible!)

Only co-safe temporal logic specifications (at this point)

19

What is next?

Demonstrate scalability
Reduce conservatism
Extend to broader classes dynamics — hybrid, nonlinear,…
Expand the family of specifications

usual
suspects

new
opportunities

Open up a broad set of new problems to ideas from controls
and optimization

